• Title/Summary/Keyword: xylose

Search Result 783, Processing Time 0.023 seconds

Isolation of Constitutive Mutant of xylA Gene in Escherichia coli (대장균 xylA 유전자의 구성적 변이주의 분리)

  • Soh, Jae Hyun;Roh, Dong Hyun;Rhee, In Koo
    • Current Research on Agriculture and Life Sciences
    • /
    • v.11
    • /
    • pp.81-89
    • /
    • 1993
  • In order to isolate a mutant which was constitutively expressed in xylA gene, Pxyl-cat-xylA fusion gene was constructed by the insertion of cat gene between xylA promoter and xylA structural gene in pEX13 contained xylA gene. The expression of cat and xylA gene from transformants of xylA mutant DH77 with plasmid pEXC131 containing Pxyl-cat-xylA fusion gene was induced by the addition of 0.4% xylose to media. This results indicated that cat and xylA gene were expressed under control of xylA promoter the presence of xylR gene. We have also isolated constitutive mutant plasmid pEXC131-39 from pEXC131 by trementment with N-methyl-N'-nitro-N-nitrosoguanidine(NTG). cat and xylA gene from pEXC131-39 were constitutively expressed without induction of xylose regardless of xylR gene. Transformants of xylR mutant DH60 with pEXC131-39 also expressed chloramphenicol resistances and xylose isomerase without induction of xylose. This result shows that mutation in region of xylA promoter might make it possible to be constitutively expressed.

  • PDF

Specific Expression Patterns of xyl1, xyl2, and xyl3 in Response to Different Sugars in Pichia stipitis

  • Han, Ji-Hye;Park, Ju-Yong;Kang, Hyun-Woo;Choi, Gi-Wook;Chung, Bong-Woo;Min, Ji-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.5
    • /
    • pp.946-949
    • /
    • 2010
  • The effects of two different sugars (glucose and xylose) on the expression levels and patterns of the xylose reductase (xyl1), xylitol dehydrogenase (xyl2), and xylulokinase (xyl3) genes were analyzed using Pichia stipitis. A significant increase in mRNA levels of xyl1 was observed after 6 h growth in culture conditions using xylose as a sole carbon source, but expressions of the three genes were not influenced by normal culture media with glucose. In addition, expressions of xyl2 and xyl3 were not observed during the entire culture period during which xylose was added. It also was found that the expression level of xyl1 increased as a function of the xylose concentration (40, 60, and 80 g/l) used in this study, indicating that xyl1 expression sensitively responded to xylose in the culture media. Although the induced level of xyl2 increased slightly after 48 h in the xylose-supplemented culture conditions, the expression of xyl2 was not observed in the xylitol-supplemented culture conditions. Finally, considering the expression of each gene in response to glucose or xylose, the absolute expression levels of the three genes indicate that xyl1 is induced primarily by exposure to xylose.

Effect of Cell Density on Xylitol Fermentation by Candida parapsilosis (Candida parapsilosis에 의한 Xylitol 생산시 균체농도가 미치는 영향)

  • Kim, Sang-Yong;Yoon, Sang-Hyun;Kim, Jung-Min;Oh, Deok-Kun
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.5
    • /
    • pp.970-973
    • /
    • 1996
  • Effect of cell density on the xylitol production from xylose by Candida parapsilosis KFCC 10875 was investigated. The concentrated cells were obtained by centrifugation of culture broth. The xylitol production rate was maximum at the cell concentration of 20 g/l and the specific xylitol production rate decreased when the cell concentration was increased due to oxygen limitation. Effect of the initial concentration of xylose on the xylitol production was also examined using the concentrated cells of 20 g/l. The xylitol production rate, specific xylitol production rate, and xylitol yield from xylose were maximum at 170 g/l xylose. Above 170 g/l xylose, the xylitol production rate was remarkably decreased. The concentrated cells could also be obtained by adjusting the dissolved oxygen (DO) during fermentation. The rapid accumulation of cells up to 20 g/l was achieved by maintaining an increased level of DO during the exponential growth phase and then, for the efficient xylitol production, the DO was changed to a low level in the range of 0.7-1.5%. A fed-batch fermentation of xylose by adjusting the DO level was carried out in a fermentor and the final xylitol concentration of 140 g/l from xylose of 200 g/l could be obtained for 56 h fermentation.

  • PDF

Antioxidative Effect and Characteristics of Different Model Melanoidins with Same Color Intensity (색도를 동일하게 조정한 Model Melanoidin들의 항산화효과 및 특성)

  • Lim, Won-Yong;Kim, Jong-Sang;Moon, Gap-Soon
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.1045-1051
    • /
    • 1997
  • Three kinds of model melanoidins adjusted to have the same brown color intensity were made from glucose-glycine, glucose-lysine, xylose-arginine and their antioxidative properties were determined. The antioxidative activities of these model melanoidins in linoleic acid emulsion system were determined by ferric thiocyanate method, conjugated diene contents, peroxide value and electron donating ability by DPPH. Xylose-arginine melanoidin showed the strongest antioxidative activity and electron donating ability. The antioxidative effect of melanoidin could be reliably predicted by determining peroxide value and DPPH method. Each melanoidin was separated on Sephadex G-50 column, and brown color intensity, reducing power, ninhydrin positive reaction and antioxidative activity of each fraction were determined. The antioxidative activities of melanoidin fractions showed strong correlation with their brown color intensity and especially to their reducing power. In spite of same brown color intensity, there is no big differences between these model melanoidins, thus xylose-arginine showing strongest antioxidative activity followed by glucose-lysine and glucose-glycine melanoidin. Xylose-arginine melanoidin also showed the strongest electron donating activity and broad range of reducing power when fractionated on Sephadex G-50, which was different tendency from the other model melanoidin.

  • PDF

ᴅ-Xylose as a sugar complement regulates blood glucose levels by suppressing phosphoenolpyruvate carboxylase (PEPCK) in streptozotocin-nicotinamide-induced diabetic rats and by enhancing glucose uptake in vitro

  • Kim, Eunju;Kim, Yoo-Sun;Kim, Kyung-Mi;Jung, Sangwon;Yoo, Sang-Ho;Kim, Yuri
    • Nutrition Research and Practice
    • /
    • v.10 no.1
    • /
    • pp.11-18
    • /
    • 2016
  • BACKGROUND/OBJECTIVES: Type 2 diabetes (T2D) is more frequently diagnosed and is characterized by hyperglycemia and insulin resistance. $\small{D}$-xylose, a sucrase inhibitor, may be useful as a functional sugar complement to inhibit increases in blood glucose levels. The objective of this study was to investigate the anti-diabetic effects of $\small{D}$-xylose both in vitro and stretpozotocin (STZ)-nicotinamide (NA)-induced models in vivo. MATERIALS/METHODS: Wistar rats were divided into the following groups: (i) normal control; (ii) diabetic control; (iii) diabetic rats supplemented with a diet where 5% of the total sucrose content in the diet was replaced with $\small{D}$-xylose; and (iv) diabetic rats supplemented with a diet where 10% of the total sucrose content in the diet was replaced with $\small{D}$-xylose. These groups were maintained for two weeks. The effects of $\small{D}$-xylose on blood glucose levels were examined using oral glucose tolerance test, insulin secretion assays, histology of liver and pancreas tissues, and analysis of phosphoenolpyruvate carboxylase (PEPCK) expression in liver tissues of a STZ-NA-induced experimental rat model. Levels of glucose uptake and insulin secretion by differentiated C2C12 muscle cells and INS-1 pancreatic ${\beta}$-cells were analyzed. RESULTS: In vivo, $\small{D}$-xylose supplementation significantly reduced fasting serum glucose levels (P < 0.05), it slightly reduced the area under the glucose curve, and increased insulin levels compared to the diabetic controls. $\small{D}$-xylose supplementation enhanced the regeneration of pancreas tissue and improved the arrangement of hepatocytes compared to the diabetic controls. Lower levels of PEPCK were detected in the liver tissues of $\small{D}$-xylose-supplemented rats (P < 0.05). In vitro, both 2-NBDG uptake by C2C12 cells and insulin secretion by INS-1 cells were increased with $\small{D}$-xylose supplementation in a dose-dependent manner compared to treatment with glucose alone. CONCLUSIONS: In this study, $\small{D}$-xylose exerted anti-diabetic effects in vivo by regulating blood glucose levels via regeneration of damaged pancreas and liver tissues and regulation of PEPCK, a key rate-limiting enzyme in the process of gluconeogenesis. In vitro, $\small{D}$-xylose induced the uptake of glucose by muscle cells and the secretion of insulin cells by ${\beta}$-cells. These mechanistic insights will facilitate the development of highly effective strategy for T2D.

Production of Xylitol by Catabolite Derepressed Mutant of Candida sp. (Candida sp.의 Catabolite Derepressed Mutant에 의한 Xylitol 생산)

  • 한완옥;서진호;유연우
    • KSBB Journal
    • /
    • v.13 no.1
    • /
    • pp.6-12
    • /
    • 1998
  • In order to produce xylitol from hemicellulose hydrolysate which is widely used as a substrate, the development of strain such as catabolite derepressed mutant is required. After treatment of Candida sp. with EMS, GM-17 and PM-34 as catabolite derepressed mutant were isolated from Candida guilliermondii and Candida parapsilosis, respectively. Mutant GM-17 and PM-34 simultaneously assimilated xylose and glucose during the fermentation. The specific xylose reductase and xylitol dehydrogenase activities of mutant strains were also higher than those of wild strains in glucose medium and mixed medium of glucose and xylose. The xylitol productivity and yield of mutant GM-17 and PM-34 were improved as compared to the wild types in the mixed medium. The xylitol productivity and yield of mutant GM-17 were 0.09 g/L·hr and 0.56 g-xylitol/g-xylose, and those of mutant PM-34 were 0.21 g/L·hr and 0.52 g-xylitol/g-xylose in the mixed medium, respectively.

  • PDF

A study on the reaction rate and the antioxidant effects of caramelization reaction mixtures (Caramelization 온도별 반응속도와 반응 생성물의 유지에 대한 항산화효과에 관한 연구)

  • 최인덕;안명수
    • Korean journal of food and cookery science
    • /
    • v.11 no.4
    • /
    • pp.396-400
    • /
    • 1995
  • The antioxidant effects in soybean oil was investigated by browning reaction mixtures formed by sugar and reaction temperatures above 110$^{\circ}C$. 0.1 M solution of xylose, glucose and sucrose were heated at 110, 120, 130, 140 and 150$^{\circ}C$ for 24 hrs respectively. A reaction rate constant(k), activation energy (Ea) and Q$\sub$10/ value were determined by color intensity that was measured absorbance at 490 nm in each temperature. Soybean oil containing the ethanol extracts taken from the browning reaction mixtures that were heated at 110, 130 and 150$^{\circ}C$ was stored in an incubator kept at 45.0${\pm}$1.0$^{\circ}C$ for 24 days. The results are as follows: 1. When 0.1 M solution of xylose, glucose and sucrose were heated at 110$^{\circ}C$ and 120$^{\circ}C$, the intensity of glucose browning mixtures was the highest, but heated at 150$^{\circ}C$, the color intensity increased in order of xylose > glucose > sucrose after 24 hrs. 2. The reaction rate constant (k) was increased rapidly above 140$^{\circ}C$ and appeared maximum at 150$^{\circ}C$, esp. xylose was the highest. The activation onergy (Ea) of xylose was the highest as 93.28 Joule/mole and the Q$\sub$10/ value of xylose was appeared 1.28. Q$\sub$10/ value was also the highest in xylose. 3. The browning reaction mixtures that were heated at 110$^{\circ}C$ appeared little antioxidant effects. But, in heated at 130$^{\circ}C$ and 150$^{\circ}C$, the antioxidant effects appeared in sucrose browning reaction mixtures. Therefore, in browning reaction mixtures that heated above 110$^{\circ}C$, only sucrose browning reaction mixtures appeared antioxidant effects and xylose, glucose appeared little antioxidant effects. On the contrary xylose and glucose increased peroxide values of soybean oil.

  • PDF

Development of Pichia stipitis Co-fermenting Cellobiose and Xylose Through Adaptive Evolution (적응진화를 활용한 cellobiose와 xylose 동시발효 Pichia stipitis의 개발)

  • Kim, Dae-Hwan;Lee, Won-Heong
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.4
    • /
    • pp.565-573
    • /
    • 2019
  • Production of biofuels and value-added materials from cellulosic biomass requires the development of a microbial strain capable of efficiently fermenting mixed sugars. In this study, the natural xylose fermenting yeast, Pichia stipitis, was evolved to simultaneously ferment cellobiose and xylose. Serial subcultures of wild-type P. stipitis in 20 g/l cellobiose were performed to increase the rate of cellobiose consumption. A total of ten rounds of the serial subculture led to the isolation of an evolved strain fermenting cellobiose significantly faster than the parental strain. The evolved strain displayed enhanced ethanol yield from 0 to 0.4 g ethanol/g cellobiose. The evolved P. stipitis simultaneously fermented cellobiose and xylose in batch fermentation. The genetic information of our evolved P. stipitis would be valuable in the development of a microbial host for the production of biofuels and biomaterials from cellulosic biomass.

A New Strategy to Improve the Efficiency and Sustainability of Candida parapsilosis Catalyzing Deracemization of (R,S)-1-Phenyl-1,2-Ethanediol Under Non-Growing Conditions: Increase of NADPH Availability

  • Nie, Yao;Xu, Yan;Hu, Qing Sen;Xiao, Rong
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.1
    • /
    • pp.65-71
    • /
    • 2009
  • Microbial oxidoreductive systems have been widely used in asymmetric syntheses of optically active alcohols. However, when reused in multi-batch reaction, the catalytic efficiency and sustainability of non-growing cells usually decreased because of continuous consumption of required cofactors during the reaction process. A novel method for NADPH regeneration in cells was proposed by using pentose metabolism in microorganisms. Addition of D-xylose, L-arabinose, or D-ribose to the reaction significantly improved the conversion efficiency of deracemization of racemic 1-phenyl-1,2-ethanediol to (S)-isomer by Candida parapsilosis cells already used once, which afforded the product with high optical purity over 97%e.e. in high yield over 85% under an increased substrate concentration of 15 g/l. Compared with reactions without xylose, xylose added to multi-batch reactions had no influence on the activity of the enzyme catalyzing the key step in deracemization, but performed a promoting effect on the recovery of the metabolic activity of the non-growing cells with its consumption in each batch. The detection of activities of xylose reductase and xylitol dehydrogenase from cell-free extract of C. parapsilosis made xylose metabolism feasible in cells, and the depression of the pentose phosphate pathway inhibitor to this reaction further indicated that xylose facilitated the NADPH-required deracemization through the pentose phosphate pathway in C. parapsilosis. moreover, by investigating the cofactor pool, the xylose addition in reaction batches giving more NADPH, compared with those without xylose, suggested that the higher catalytic efficiency and sustainability of C. parapsilosis non-growing cells had resulted from xylose metabolism recycling NADPH for the deracemization.

Clean and Efficient Synthesis of Furfural From Xylose by Microwave-Assisted Biphasic System using Bio-Based Heterogeneous Acid Catalysts

  • Vo, Anh Thi Hoang;Lee, Hong-shik;Kim, Sangyong;Cho, Jin Ku
    • Clean Technology
    • /
    • v.22 no.4
    • /
    • pp.250-257
    • /
    • 2016
  • As an attempt to replacing petroleum-based chemicals with bio-based ones, synthesis of furfural from biomass-derived xylose attracts much attention in recent days. Conventionally, furfural from xylose has been produced via the utilization of highly corrosive, toxic, and environmentally unfriendly mineral acids such as sulfuric acid or hydrochloric acid. In this study, microwave-assisted biphasic reaction process in the presence of novel bio-based heterogeneous acid catalysts was developed for the eco-benign and effective synthesis of furfural from xylose. The microwave was irradiated for reaction acceleration and a biphasic system consisting of $H_2O$ : MIBK (1 : 2) was designed for continuous extraction of furfural into the organic phase in order to reduce the undesired side products formed by decomposition/condensation/oligomerization in the acidic aqueous phase. Moreover, sulfonated amorphous carbonaceous materials were prepared from wood powder, the most abundant lignocellulosic biomass. The prepared catalysts were characterized by FT-IR, XPS, BET, elemental analysis and they were used as bio-based heterogeneous acid catalysts for the dehydration of xylose into furfural more effectively. For further optimization, the effect of temperature, reaction time, water/organic solvent ratio, and substrate/catalyst ratio on the xylose conversion and furfural yield were investigated and 100% conversion of xylose and 74% yield of furfural was achieved within 5 h at $180^{\circ}C$. The bio-based heterogeneous acid catalysts could be used three times without any significant loss of activity. This greener protocol provides highly selective conversion of xylose to furfural as well as facile isolation of product and bio-based heterogeneous acid catalysts can alternate the environmentally-burdened mineral acids.