Browse > Article
http://dx.doi.org/10.4014/jmb.0804.283

A New Strategy to Improve the Efficiency and Sustainability of Candida parapsilosis Catalyzing Deracemization of (R,S)-1-Phenyl-1,2-Ethanediol Under Non-Growing Conditions: Increase of NADPH Availability  

Nie, Yao (Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University)
Xu, Yan (Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University)
Hu, Qing Sen (Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University)
Xiao, Rong (Center for Advanced Biotechnology and Medicine, Rutgers University)
Publication Information
Journal of Microbiology and Biotechnology / v.19, no.1, 2009 , pp. 65-71 More about this Journal
Abstract
Microbial oxidoreductive systems have been widely used in asymmetric syntheses of optically active alcohols. However, when reused in multi-batch reaction, the catalytic efficiency and sustainability of non-growing cells usually decreased because of continuous consumption of required cofactors during the reaction process. A novel method for NADPH regeneration in cells was proposed by using pentose metabolism in microorganisms. Addition of D-xylose, L-arabinose, or D-ribose to the reaction significantly improved the conversion efficiency of deracemization of racemic 1-phenyl-1,2-ethanediol to (S)-isomer by Candida parapsilosis cells already used once, which afforded the product with high optical purity over 97%e.e. in high yield over 85% under an increased substrate concentration of 15 g/l. Compared with reactions without xylose, xylose added to multi-batch reactions had no influence on the activity of the enzyme catalyzing the key step in deracemization, but performed a promoting effect on the recovery of the metabolic activity of the non-growing cells with its consumption in each batch. The detection of activities of xylose reductase and xylitol dehydrogenase from cell-free extract of C. parapsilosis made xylose metabolism feasible in cells, and the depression of the pentose phosphate pathway inhibitor to this reaction further indicated that xylose facilitated the NADPH-required deracemization through the pentose phosphate pathway in C. parapsilosis. moreover, by investigating the cofactor pool, the xylose addition in reaction batches giving more NADPH, compared with those without xylose, suggested that the higher catalytic efficiency and sustainability of C. parapsilosis non-growing cells had resulted from xylose metabolism recycling NADPH for the deracemization.
Keywords
Candida parapsilosis; deracemization; NADPH availability; pentose; sustainability;
Citations & Related Records

Times Cited By Web Of Science : 3  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Lv, T., Y. Xu, X. Mu, and Y. Nie. 2007. Promotion effect of xylose co-substrate on stability of catalytic system for asymmetric redox of (R,S)-1-phenyl-1,2-ethanediol to its (S)-enantiomer by Candida parapsilosis. Chin. J. Catal. 28: 446-450   DOI   ScienceOn
2 Timasheff, S. N. 1993. The control of protein stability and association by weak interactions with water: How do solvents affect these processes? Annu. Rev. Biophys. Biomol. Struct. 22:67-97   DOI   PUBMED   ScienceOn
3 Tishkov, V. I., A. G. Galkin, V. V. Fedorchuk, P. A. Savitsky, A. M. Rojkova, H. Gieren, and M. R. Kula. 1999. Pilot scale production and isolation of recombinant NAD+- and NADP+- specific formate dehydrogenases. Biotechnol. Bioeng. 64: 187-193   DOI   ScienceOn
4 Haberland, J., A. Kriegesmann, E. Wolfram, W. Hummel, and A. Liese. 2002. Diastereoselective synthesis of optically active (2R,5R)-hexanediol. Appl. Microbiol. Biotechnol. 58: 595-599   DOI   ScienceOn
5 Ishige, T., K. Honda, and S. Shimizu. 2005. Whole organism biocatalysis. Curr. Opin. Chem. Biol. 9: 174-180   DOI   ScienceOn
6 Jiang, Q., S. Yao, and L. Mei. 2002. Tolerance of immobilized Baker's yeast in organic solvents. Enzyme Microb. Technol. 30:721-725   DOI   ScienceOn
7 Karhumaa, K., R. Fromanger, B. Hahn-Hagerdal, and M. F. Gorwa-Grauslund. 2007. High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 73:1039-1046   DOI   PUBMED   ScienceOn
8 Dahl, A. C. and J. O. Madsen. 1998. Baker's yeast: Production of D- and L-3-hydroxy esters. Tetrahedr. Asymm. 9: 4395-4417   DOI   ScienceOn
9 Pitkanen, J. P., A. Aristidou, L. Salusjarvi, L. Ruohonen, and M. Penttila. 2003. Metabolic flux analysis of xylose metabolism in recombinant Saccharomyces cerevisiae using continuous culture. Metab. Eng. 5: 16-31   DOI   ScienceOn
10 Strauss, U. T., U. Felfer, and K. Faber. 1999. Biocatalytic transformation of racemates into chiral building blocks in 100% chemical yield and 100% enantiomeric excess. Tetrahedr. Asymm. 10: 107-117   DOI   ScienceOn
11 Ichinose, H., N. Kamiya, and M. Goto. 2005. Enzymatic redox cofactor regeneration in organic media: Functionalization and application of glycerol dehydrogenase and soluble transhydrogenase in reverse micelles. Biotechnol. Prog. 21: 1192-1197   DOI   ScienceOn
12 Yamamoto, H., A. Matsuyama, and Y. Kobayashi. 2002. Synthesis of ethyl (R)-4-chloro-3-hydroxybutanoate with recombinant Escherichia coli cells expressing (S)-specific secondary alcohol dehydrogenase. Biosci. Biotechnol. Biochem. 66: 481-483   DOI   ScienceOn
13 Boonstra, B., D. A. Rathbone, C. E. French, E. H. Walker, and N. C. Bruce. 2000. Cofactor regeneration by a soluble pyridine nucleotide transhydrogenase for biological production of hydromorphone. Appl. Environ. Microbiol. 66: 5161-5166   DOI   ScienceOn
14 van der Donk, W. A. and H. Zhao. 2003. Recent developments in pyridine nucleotide regeneration. Curr. Opin. Biotechnol. 14:421-426   DOI   ScienceOn
15 Voss, C. V., C. C. Gruber, and W. Kroutil. 2008. Deracemization of secondary alcohols through a concurrent tandem biocatalytic oxidation and reduction. Angew. Chem. Int. Ed. Engl. 47: 741-745   DOI   ScienceOn
16 Liese, A., M. Karutz, J. Kamphuis, C. Wandrey, and U. Kragl. 1996. Resolution of 1-phenyl-1,2-ethanediol by enantioselective oxidation overcoming product inhibition by continuous extraction. Biotechnol. Bioeng. 51: 544-550   DOI   PUBMED   ScienceOn
17 Zhang, Z., J. Yu, and R. C. Stanton. 2000. A method for determination of pyridine nucleotides using a single extract. Anal. Biochem. 285: 163-167   DOI   ScienceOn
18 Jeffries, T. W. 2006. Engineering yeasts for xylose metabolism. Curr. Opin. Biotechnol. 17: 320-326   DOI   PUBMED   ScienceOn
19 Kataoka, M., K. Kita, M. Wada, Y. Yasohara, J. Hasegawa, and S. Shimizu. 2003. Novel bioreduction system for the production of chiral alcohols. Appl. Microbiol. Biotechnol. 62: 437-445   DOI   ScienceOn
20 Panke, S., M. Held, and M. Wubbolts. 2004. Trends and innovations in industrial biocatalysis for the production of fine chemicals. Curr. Opin. Biotechnol. 15: 272-279   DOI   ScienceOn
21 Bradford, M. M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254   DOI   PUBMED   ScienceOn
22 Koeller, K. M. and C. H. Wong. 2001. Enzymes for chemical synthesis. Nature 409: 232-240   DOI   ScienceOn
23 Schoemaker, H. E., D. Mink, and M. G. Wubbolts. 2003. Dispelling the myths-biocatalysis in industrial synthesis. Science 299: 1694-1697   DOI   PUBMED   ScienceOn
24 Sultana, I., R. M. Mizanur, K. Takeshita, G. Takada, and K. Izumori. 2003. Direct production of D-arabinose from D-xylose by a coupling reaction using D-xylose isomerase, D-tagatose 3-epimerase and D-arabinose isomerase. J. Biosci. Bioeng. 95:342-347   DOI   PUBMED
25 Matsuyama, A., H. Yamamoto, N. Kawada, and Y. Kobayashi. 2001. Industrial production of (R)-1,3-butanediol by new biocatalysts. J. Mol. Catal. B Enzym. 11: 513-521   DOI   ScienceOn
26 Schmid, A., J. S. Dordick, B. Hauer, A. Kiener, M. Wubbolts, and B. Witholt. 2001. Industrial biocatalysis today and tomorrow. Nature 409: 258-268   DOI   ScienceOn
27 Iwasaki, F., T. Maki, W. Nakashima, O. Onomura, and Y. Matsumura. 1999. Nonenzymatic kinetic resolution of 1,2-diols catalyzed by organotin compound. Org. Lett. 1: 969-972   DOI   ScienceOn
28 Kataoka, M., Y. Nomura, S. Shimizu, and H. Yamada. 1992. Enzymes involved in the NADPH regeneration system coupled with asymmetric reduction of carbonyl compounds in microorganisms. Biosci. Biotech. Biochem. 56: 820-821   DOI
29 Mertens, R., L. Greine, E. C. D. van den Ban, H. B. C. M. Haaker, and A. Liese. 2003. Practical applications of hydrogenase I from Pyrococcus furiosus for NADPH generation and regeneration. J. Mol. Catal. B Enzym. 24-25: 39-52   DOI   ScienceOn
30 Nie, Y., Y. Xu, and X. Q. Mu. 2004. Highly enantioselective conversion of racemic 1-phenyl-1,2-ethanediol by stereoinversion involving a novel cofactor-dependent oxidoreduction system of Candida parapsilosis CCTCC M203011. Org. Process Res. Dev. 8: 246-251   DOI   ScienceOn
31 Lima, L. H. A., C. G. Pinheiro, L. M. P. de Moraes, S. M. de Freitas, and F. A. G. Torres. 2006. Xylitol dehydrogenase from Candida tropicalis: Molecular cloning of the gene and structural analysis of the protein. Appl. Microbiol. Biotechnol. 73: 631-639   DOI   ScienceOn
32 Walton, A. Z. and J. D. Stewart. 2002. An efficient enzymatic Baeyer-Villiger oxidation by engineered Escherichia coli cells under non-growing conditions. Biotechnol. Prog. 18: 262-268   DOI   ScienceOn
33 Urlacher, V. B. and R. D. Schmid. 2006. Recent advances in oxygenase-catalyzed biotransformations. Curr. Opin. Chem. Biol. 10: 156-161   DOI   ScienceOn
34 Gupte, S. A., T. Okada, I. F. McMurtry, and M. Oka. 2006. Role of pentose phosphate pathway-derived NADPH in hypoxic pulmonary vasoconstriction. Pulm. Pharmacol. Ther. 19: 303-309   DOI   ScienceOn
35 Jeffries, T. W. and Y. S. Jin. 2004. Metabolic engineering for improved fermentation of pentoses by yeasts. Appl. Microbiol. Biotechnol. 63: 495-509   DOI   ScienceOn
36 Nie, Y., Y. Xu, X. Q. Mu, H. Y. Wang, M. Yang, and R. Xiao. 2007. Purification, characterization, gene cloning and expression of a novel alcohol dehydrogenase with anti-Prelog stereospecificity from Candida parapsilosis. Appl. Environ. Microbiol. 73: 3759-3764   DOI   ScienceOn
37 Kroutil, W., H. Mang, K. Edegger, and K. Faber. 2004. Recent advances in the biocatalytic reduction of ketones and oxidation of sec-alcohols. Curr. Opin. Chem. Biol. 8: 120-126   DOI   ScienceOn
38 Nakamura, K., Y. lnoue, and A. Ohno. 1995. Improvement of enantioselectivity of microbial reduction by using organic solvent redox coupler system. Tetrahedron. Lett. 36: 265-266   DOI   ScienceOn
39 Itoh, N., M. Matsuda, M. Mabuchi, T. Dairi, and J. Wang. 2002. Chiral alcohol production by NADH-dependent phenylacetaldehyde reductase coupled with in situ regeneration of NADH. Eur. J. Biochem. 269: 2394-2402   DOI   ScienceOn