• Title/Summary/Keyword: xylanase fermentation

Search Result 63, Processing Time 0.036 seconds

Optimization of a Medium for the Production of Cellulase by Bacillus subtilis NC1 Using Response Surface Methodology (반응 표면 분석법을 사용한 Bacillus subtilis NC1 유래 cellulase 생산 배지 최적화)

  • Yang, Hee-Jong;Park, Chang-Su;Yang, Ho-Yeon;Jeong, Su-Ji;Jeong, Seong-Yeop;Jeong, Do-Youn;Kang, Dae-Ook;Moon, Ja-Young;Choi, Nack-Shick
    • Journal of Life Science
    • /
    • v.25 no.6
    • /
    • pp.680-685
    • /
    • 2015
  • Previously, cellulase and xylanase producing microorganism, Bacillus subtilis NC1, was isolated from soil. Based on the 16S rRNA gene sequence and API 50 CHL test the strain was identified as Bacillus subtilis, and named as B. subtilis NC1. We cloned and sequenced the genes for cellulase and xylanase. Plus, the deduced amino acid sequences from the genes of cellulase and xylanase were determined and were also identified as glycosyl hydrolases family (GH) 5 and 30, respectively. In this study to optimize the medium parameters for cellulase production by B. subtilis NC1 the RSM (response surface methodology) based on CCD (central composite design) model was performed. Three factors, tryptone, yeast extract, and NaCl, for N or C source were investigated. The cellulase activity was measured with a carboxylmethyl cellulose (CMC) plate and the 3,5-dinitrosalicylic acid (DNS) methods. The coefficient of determination (R2) for the model was 0.960, and the probability value (p=0.0001) of the regression model was highly significant. Based on the RSM, the optimum conditions for cellulase production by B. subtilis NC1 were predicted to be tryptone of 2.5%, yeast extract of 0.5%, and NaCl of 1.0%. Through the model verification, cellulase activity of Bacillus subtilis NC1 increased from 0.5 to 0.62 U/ml (24%) compared to the original medium.

Effects of Supplementing Aqueous Direct-Fed Microbials on In Vitro Fermentation and Fibrolytic Enzyme Activity in the Ruminant Nutrition (반추가축영양에 있어서 액상미생물제제의 첨가가 In Vitro 발효성상과 섬유소분해효소활성에 미치는 영향)

  • Lee, S.H.;Seo, I.J.
    • Journal of Animal Science and Technology
    • /
    • v.47 no.5
    • /
    • pp.789-804
    • /
    • 2005
  • This study was conducted to determine effects of supplementation levels of aqueous direct-fed microbials (DFM; Bacillus spp.) to TMR(exp. 1.) and aqueous DFM addition under the various ratios of starch and cellulose(exp. 2.) on ruminal fermentation and fibrolytic enzyme activity. In experiment 1, ruminal fluids taken from rumen-cannulated Holstein cows were incubated during 24 hr by using TMR as substrates. Aqueous DFM was applied at a rate of 0, 0.025 and 0.05%, respectively. The pH of 0.025% treatment was not significantly different from that of control at 6 and 9 hr, but it was significantly lower (P<0.05) than 0.05% treatment. Concentrations of ammonia-N and VFAs were not affected by supplementing aqueous DFM. The A:P ratio of 0.05% treatment was significantly increased(P<0.05) by supplementation of aqueous DFM as compared with that of control at 24 hr. Although overall fibrolytic enzyme activities were not significantly affected by supplementing aqueous DFM, CMCase(carboxymethylcellulase) activity showed significant increase(P<0.05) compared to control at 6hr. However, the xylanase activity of 0.05% treatment significantly decreased(P<0.05) at 12 hr due to the application of aqueous DFM. There was no significant difference for in vitro dry matter disappearance among treatments. In experiment 2, ruminal fluids were incubated under the condition of various ratios of starch to cellulose(90:10, 70:30, 50:50, 30:70 and 10:90) with or without aqueous DFM(0.025%). Ruminal pH was unaffected by the addition of aqueous DFM, however, as increased level of starch, ruminal pH partially showed significant decrease(P<0.05). Ammonia-N concentration was not affected by aqueous DFM and ratio of starch and cellulose. On 9 hr incubation, DFM addition at a ratio of 70:30 showed significantly (P<0.05) lower value of ammonia-N(35.65 mg/dL) than that(65.05 mg/dL) of control. Concentrations of VFAs were significantly increased(P<0.05) by aqueous DFM addition compared with control at the same ratio on 6 hr incubation. The overall CMCase activity was not affected by aqueous DFM addition. However, the xylanase activity by aqueous DFM partially showed significant differences at the ratios of 90:10, 30:70 and 10:90. Our results indicated that supplementation of aqueous DFM did not significantly improve in vitro fermentation and fibrolytic enzyme activity. In addition, the DFM utilized in this study did not show consistent results by having various effects on ruminal fermentation under different feeding regimens.

Enzymatic Reactions in Citric Acid Fermentation of Mandarin Orange Peel by Aspfrgillus niger (만다린 오렌지 과피를 기질로 한 Aspergillus niger의 구연산 발효에 관련된 효소적 반응)

  • 강신권;노종수;성낙계
    • Microbiology and Biotechnology Letters
    • /
    • v.21 no.1
    • /
    • pp.13-17
    • /
    • 1993
  • When mandarin orange peel was used for a substrate of citric aCid fermentation by Aspergillus niger, principal enzyme activities were investigated. Not only the activity of polygalacturonase and pectin esterase being capable of digesting pectin and crude fiber of mandarin orange peel. but also that of carboxymethyl cellulase, xylanase and amylase was high. In carbohydrate metabolism, the activity of enzymes related in HMP pathway was higher than that in EMP pathway at the orange peel medium designed hereby rather than synthetic medium. Productivity of citric acid was significantly increased when the activity of citrate synthetase was high and 5imultaneously those of aconitase and NADP-dependent dehydrogenase were low.

  • PDF

Characteristic study and isolation of Bacillus subtilis SRCM 101269 for application of cow manure (우분 적용을 위한 Bacillus subtilis SRCM 101269의 분리 및 특성 연구)

  • Jeon, SaeBom;Oh, HyeonHwa;Uhm, Tai-Boong;Cho, Jae-Young;Yang, Hee-Jong;Jeong, Do-Youn
    • Korean Journal of Microbiology
    • /
    • v.52 no.1
    • /
    • pp.74-83
    • /
    • 2016
  • Bacillus subtilis SRCM 101269 having safety and amo gene isolated from Korean traditional fermented food and their investigated characterization to apply the cow manure such as cellulase and xylanase activities, 16S rRNA sequencing, and ability of removal of livestock manure odor. Cow manure application results for the removal of livestock manure odor, the ammonia gas was reduced more than two-folder compared to the control group after 6 days, and reduced to less than 10 ppm after 9 days. In the case of cow manure added fowl droppings and other wood-based mixture components, ammonia gas maintained constant after 3 days of fermentation. However, in the case of sample inoculated B. subtilis SRCM 101269, ammonia gas reduced in course of fermentation time, and concentration of hydrogen sulfide also reduced for 65 ppm. Changes of nitrite concentration according to fermentation time no showed different for cow manure, however nitrite concentration in mixed livestock manure increased when compared to control. And then sulfate concentration in cow manure decreased, and no showed different when compared to the initial fermentation. No apparent change of sulfate concentration in mixed livestock manure detected. Through the previously studies, B. subtilis SRCM 101269 has high potential in industrial application manufacturing the cow manure as removal of livestock manure odor.

Fermentation and Quality Characteristics of Cheonggukjang Fermented with Bacillus subtilis BC-P1 (Bacillus subtilis BC-P1 균주를 이용하여 제조한 청국장의 발효 및 품질 특성분석)

  • Park, Sung-Yong;Bang, Mi-Ae;Oh, Boung-Jun;Park, Jeong-Hoon;Song, Won-Seob;Choi, Kyung-Min;Choung, Eui-Su;Boo, Hee-Ock;Cho, Seung-Sik
    • Korean Journal of Microbiology
    • /
    • v.49 no.3
    • /
    • pp.262-269
    • /
    • 2013
  • The object of this study was to improve the quality of Cheonggukjang with new starter, Bacillus subtilis BC-P1. Twenty strains were isolated from the commercial cheonggukjang and 1 Bacillus strain (BC-P1) with protease activity was selected. The 16S rRNA gene sequence revealed that the BC-P1 was closely related to B. subtilis with 99% homology. The quality characteristics of chunggukjang fermented with B. subtilis BC-P1, Bacillus nato (PC) and commercial chunggukjang (NC) were investigated. The characteristics of fermentation were determined by protease, lipase, xylanase, chitinase, and fibrinolytic activities, reducing sugar, nutrient composition and amino acid contents of cheonggukjang sample. Cheonggukjang fermented with B. subtilis BC-P1 showed the strongest fibrinolytic, xylanase, and chitinase activities. Reducung sugar contents of Cheonggukjang samples were $30.16{\pm}2.11$ mg/g (NC), $28.56{\pm}1.52$ mg/g (PC), $32.39{\pm}1.87$ mg/g (BC-P1). And their total amino acid contents were 338.99 mg% (NC), 445.19 mg% (PC), 741.35 mg% (BC-P1). These results suggested that B. subtilis BC-P1 was suitable to be used as a starter to enhance the quality and effects of cheonggukjang.

A Cellulolytic and Xylanolytic Enzyme Complex from an Alkalothermoanaerobacterium, Tepidimicrobium xylanilyticum BT14

  • Phitsuwan, Paripok;Tachaapaikoon, Chakrit;Kosugi, Akihiko;Mori, Yutaka;Kyu, Khin Lay;Ratanakhanokchai, Khanok
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.5
    • /
    • pp.893-903
    • /
    • 2010
  • A cellulolytic and xylanolytic enzyme complex-producing alkalothermoanaerobacterium strain, Tepidimicrobium xylanilyticum BT14, is described. The cell was Grampositive, rod-shaped, and endospore-forming. Based on 16S rRNA gene analysis and various lines of biochemical and physiological properties, the strain BT14 is a new member of the genus Tepidimicrobium. The strain BT14 cells had the ability to bind to Avicel, xylan, and corn hull. The pH and temperature optima for growth were 9.0 and $60^{\circ}C$, respectively. The strain BT14 was able to use a variety of carbon sources. When the bacterium was grown on corn hulls under an anaerobic condition, a cellulolytic and xylanolytic enzyme complex was produced. Crude enzyme containing cellulase and xylanase of the strain BT14 was active in broad ranges of pH and temperature. The optimum conditions for cellulase and xylanase activities were pH 8.0 and 9.0 at $60^{\circ}C$, respectively. The crude enzyme had the ability to bind to Avicel and xylan. The analysis of native-PAGE and native-zymograms indicated the cellulosebinding protein showing both cellulase and xylanase activities, whereas SDS-PAGE zymograms showed 4 bands of cellulases and 5 bands of xylanases. Evidence of a cohesinlike amino acid sequence seemed to indicate that the protein complex shared a direct relationship with the cellulosome of Clostridium thermocellum. The crude enzyme from the strain BT14 showed effective degradation of plant biomass. When grown on corn hulls at pH 9.0 and $60^{\circ}C$ under anaerobic conditions, the strain BT14 produced ethanol and acetate as the main fermentation products.

Xylanolytic and Ethanologenic Potential of Gut Associated Yeasts from Different Species of Termites from India

  • Tiwari, Snigdha;Avchar, Rameshwar;Arora, Riya;Lanjekar, Vikram;Dhakephalkar, Prashant K.;Dagar, Sumit S.;Baghela, Abhishek
    • Mycobiology
    • /
    • v.48 no.6
    • /
    • pp.501-511
    • /
    • 2020
  • Xylophagous termites are capable of degrading lignocellulose by symbiotic gut microorganisms along with the host's indigenous enzymes. Therefore, the termite gut might be a potential niche to obtain natural yeasts with celluloytic, xylanolytic and ethanologenic traits required for bioethanol production from lignocellulosic biomass. In this study, we cultured 79 yeasts from three different termites viz. Coptotermes heimi, Odontotermes javanicus and Odontotermes obesus. After suitable screening methods, we identified 53 yeasts, which belonged to 10 genera and 16 different species of both ascomycetous and basidiomycetous yeasts. Most yeasts in the present study represent their first-ever isolation from the termite gut. Representative strains of identified yeasts were evaluated for their cellulolytic, xylanolytic, and ethanologenic abilities. None of the isolates showed cellulase activity; 22 showed xylanolytic activity, while six produced substantial quantities of ethanol. Among xylanolytic cultures, Pseudozyma hubeiensis STAG 1.7 and Hannaella pagnoccae STAG 1.14 produced 1.31 and 1.17 IU of xylanase. Among ethanologenic yeasts, the strains belonging to genera Candida and Kodamaea produced high amount of ethanol. Overall, highest ethanol level of 4.42 g/L was produced by Candida tropicalis TS32 using 1% glucose, which increased up to 22.92 g/L at 35 ℃, pH 4.5 with 5% glucose. Fermentation of rice straw hydrolysate gave 8.95 g/l of ethanol with a yield of 0.42 g/g using the strain TS32. Our study highlights the gut of wood-feeding termites as a potential source of diverse yeasts that would be useful in the production of xylanase and bioethanol.

Effects of Types of TMR on Rumen Fermentation Characteristics and Nutrients Digestibility in Sheep (유형별 완전혼합사료 급여가 반추위내의 발효성상 및 영양소 소화율에 미치는 영향)

  • Li, D.Y.;Ko, J.Y.;Choi, N.J.;Lee, Sang S.;Song, J.Y.;Lee, S.Y.;Park, S.H.;Sung, H.G.;Ha, J.K.
    • Journal of Animal Science and Technology
    • /
    • v.45 no.5
    • /
    • pp.805-812
    • /
    • 2003
  • This study was conducted to examine effects of feeding dry TMR(DTMR), wet TMR(WTMR) and fermented TMR(FTMR) on rumen fermentation, enzyme activity and digestibility in the total tract of sheep. Three rumen cannulated sheep were used in a 3${\times}$3 latin square design. The present results showed that pH, NH3-N, total and individual VFA, A/P ratio and enzymes (CMCase, Xylanase and Protease) activity in the rumen were higher in WTMR and FTMR compared with DTMR. In addition, dry matter, organic matter, crude protein, ether extract, NDF and ADF digestibility in the total tract were also higher in WTMR and FTMR compared with DTMR. Therefore, the present results showed that WTMR and FTMR are better than DTMR for rumen fermentation and nutrients digestibility.

In vitro Fermentation of Rumen Microorganisms Cultured in Medium Supplemented with Bacterio-mineral Water (BMW) Produced from Bio-reacted Swine Manure

  • Kim, Chang-Hyun;Park, Joong Kook;Lee, Gi Yeong;Seo, In Joon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.10
    • /
    • pp.1435-1439
    • /
    • 2005
  • Bacterio-mineral water (BMW) produced from manure has been known to exert a number of positive effects on animal production and odor control. An experiment was conducted to examine the effects of BMW produced from bio-reacted swine manure on in vitro gas production, cellulose degradation, microbial growth and fibrolytic enzyme activities of mixed rumen microorganisms. The five levels of 0, 0.001, 0.005, 0.01 and 1.0% BMW were supplemented into serum vials containing mixed rumen microorganisms. Incubations were carried out anaerobically at $39^{\circ}C$ without shaking for 0, 12, 24, 48, 72 and 96 h. There were no significant (p>0.05) differences among the treatments for the initial rate of gas production. At 72 h incubation, the gas production tended (p<0.1) to be increased by the 0.01 and 1.0% BMW treatments compared with control and the 0.001% BMW treatment. At the end of incubation (96 h), the sample supplemented with 0.01% BMW was higher (p<0.05) than control (0% BMW) in the gas production. The microbial growth rate was increased by all the BMW treatments, while 0.01% BMW was most effective in stimulating the growth rate. Although the addition of BMW on the filter paper DM degradation was not significantly influenced throughout the incubation period except the 48 h incubation, DM degradation tended to be increased by all BMW treatments compared with control. The addition of both 0.005 and 0.01% BMW highly increased (p<0.05) CMCase activity compared with control after 24 h and 48 h incubation, while at the 72 h incubation the 0.01% BMW addition only significantly increased (p<0.05). After 72 h incubation, the xylanase activity was significantly (p<0.05) increased with the addition of 1.0% BMW compared with the addition of 0.001 and 0.005% BMW, while at the other incubation times, the xylanase activity was not different among the treatments. In conclusion, the 0.01% BMW of supplementation level would be the suitable addition level to stimulate rumen fermentation increasing microbial growth and cellulose degradation.

Effects of Feeding System on Rumen Fermentation Parameters and Nutrient Digestibility in Holstein Steers

  • Li, D.Y.;Lee, Sang S.;Choi, N.J.;Lee, S.Y.;Sung, H.G.;Ko, J.Y.;Yun, S.G.;Ha, J.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.10
    • /
    • pp.1482-1486
    • /
    • 2003
  • In order to compare effects of feeding systems on rumen fermentation characteristics and nutrient digestion, steers were fed either total mixed ration (TMR) or separate concentrate-roughage ration (CR). Total tract digestibility of nutrients was higher in steers receiving TMR. Especially, DM, ADF and NDF in TMR were digested to a greater extent than those in CR. Rumen pH was not influenced by the feeding systems. Holstein steers on TMR had higher ruminal $NH_3$-N than those on CR. Feeding system did not alter VFA production but TMR feeding resulted in lower A/P ratio. TMR feeding tended to increase the number of bacteria and protozoa in the rumen fluid. Also steers fed TMR generally had higher fiber degrading enzyme activities, which might be the result of increased number of cellulolytic microbes in the rumen of animals on TMR. Our results indicate that TMR may provide more favorable condition for nutrient digestion both in the rumen and in the total tract of steers.