• 제목/요약/키워드: xenograft mouse model

검색결과 57건 처리시간 0.029초

Validity of patient-derived xenograft mouse models for lung cancer based on exome sequencing data

  • Kim, Jaewon;Rhee, Hwanseok;Kim, Jhingook;Lee, Sanghyuk
    • Genomics & Informatics
    • /
    • 제18권1호
    • /
    • pp.3.1-3.8
    • /
    • 2020
  • Patient-derived xenograft (PDX) mouse models are frequently used to test the drug efficacy in diverse types of cancer. They are known to recapitulate the patient characteristics faithfully, but a systematic survey with a large number of cases is yet missing in lung cancer. Here we report the comparison of genomic characters between mouse and patient tumor tissues in lung cancer based on exome sequencing data. We established PDX mouse models for 132 lung cancer patients and performed whole exome sequencing for trio samples of tumor-normal-xenograft tissues. Then we computed the somatic mutations and copy number variations, which were used to compare the PDX and patient tumor tissues. Genomic and histological conclusions for validity of PDX models agreed in most cases, but we observed eight (~7%) discordant cases. We further examined the changes in mutations and copy number alterations in PDX model production and passage processes, which highlighted the clonal evolution in PDX mouse models. Our study shows that the genomic characterization plays complementary roles to the histological examination in cancer studies utilizing PDX mouse models.

Human Tumor Xenograft Models for Preclinical Assessment of Anticancer Drug Development

  • Jung, Joohee
    • Toxicological Research
    • /
    • 제30권1호
    • /
    • pp.1-5
    • /
    • 2014
  • Xenograft models of human cancer play an important role in the screening and evaluation of candidates for new anticancer agents. The models, which are derived from human tumor cell lines and are classified according to the transplant site, such as ectopic xenograft and orthotopic xenograft, are still utilized to evaluate therapeutic efficacy and toxicity. The metastasis model is modified for the evaluation and prediction of cancer progression. Recently, animal models are made from patient-derived tumor tissue. The patient-derived tumor xenograft models with physiological characters similar to those of patients have been established for personalized medicine. In the discovery of anticancer drugs, standard animal models save time and money and provide evidence to support clinical trials. The current strategy for using xenograft models as an informative tool is introduced.

Targeting Orthotopic Glioma in Mice with Genetically Engineered Salmonella typhimurium

  • Wen, Min;Jung, Shin;Moon, Kyung-Sub;Jiang, Shen Nan;Li, Song-Yuan;Min, Jung-Joon
    • Journal of Korean Neurosurgical Society
    • /
    • 제55권3호
    • /
    • pp.131-135
    • /
    • 2014
  • Objective : With the growing interests of bacteria as a targeting vector for cancer treatment, diverse genetically engineered Salmonella has been reported to be capable of targeting primary or metastatic tumor regions after intravenous injection into mouse tumor models. The purpose of this study was to investigate the capability of the genetically engineered Salmonella typhimurium (S. typhimurium) to access the glioma xenograft, which was monitored in mouse brain tumor models using optical bioluminescence imaging technique. Methods : U87 malignant glioma cells (U87-MG) stably transfected with firefly luciferase (Fluc) were implanted into BALB/cAnN nude mice by stereotactic injection into the striatum. After tumor formation, attenuated S. typhimurium expressing bacterial luciferase (Lux) was injected into the tail vein. Bioluminescence signals from transfected cells or bacteria were monitored using a cooled charge-coupled device camera to identify the tumor location or to trace the bacterial migration. Immunofluorescence staining was also performed in frozen sections of mouse glioma xenograft. Results : The injected S. typhimurium exclusively localized in the glioma xenograft region of U87-MG-bearing mouse. Immunofluorescence staining also demonstrated the accumulation of S. typhimurium in the brain tumors. Conclusion : The present study demonstrated that S. typhimurium can target glioma xenograft, and may provide a potentially therapeutic probe for glioma.

Inhibition of Tumor Growth in a Mouse Xenograft Model by the Humanized Anti-HGF Monoclonal Antibody YYB-101 Produced in a Large-Scale CHO Cell Culture

  • Song, Seong-Won;Lee, Song-Jae;Kim, Chang-Young;Song, Jae-Kyung;Jung, Eui-Jung;Choi, Yong Bock;Min, Sung-Won;Oh, Jong-Won
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권9호
    • /
    • pp.1327-1338
    • /
    • 2013
  • The humanized anti-hepatocyte growth factor (HGF) monoclonal antibody (mAb) YYB-101 is a promising therapeutic candidate for treating various cancers. In this study, we developed a bioprocess for large-scale production of YYB-101 and evaluated its therapeutic potential for tumor treatment using a xenograft mouse model. By screening diverse chemically defined basal media formulations and by assessing the effects of various feed supplements and feeding schedules on cell growth and antibody production, we established an optimal medium and feeding method to produce 757 mg/l of YYB-101 in flask cultures, representing a 7.5-fold increase in titer compared with that obtained under non-optimized conditions. The optimal dissolved oxygen concentration for antibody production was 70% $pO_2$. A pH shift from 7.2 to 7.0, rather than controlled pH of either 7.0 or 7.2, resulted in productivity improvement in 5 L and 200 L bioreactors, yielding 737 and 830 mg/ml of YYB-101, respectively. The YYB-101 mAb highly purified by affinity chromatography using a Protein A column and two-step ion exchange chromatography effectively neutralized HGF in a cell-based assay and showed potent tumor suppression activity in a mouse xenograft model established with human glioblastoma cells.

Curcumin Induces Apoptosis and Inhibits Growth of Human Burkitt's Lymphoma in Xenograft Mouse Model

  • Li, Zai-xin;Ouyang, Ke-qing;Jiang, Xv;Wang, Dong;Hu, Yinghe
    • Molecules and Cells
    • /
    • 제27권3호
    • /
    • pp.283-289
    • /
    • 2009
  • Curcumin, a natural compound extracted from rhizomes of curcuma Curcuma species, has been shown to possess potent anti-inflammatory, anti-tumor and anti-oxidative properties. However, the mechanism of action of the compound remains poorly understood. In this report, we have analyzed the effects of curcumin on the cell proliferation of Burkitt's lymphoma Raji cells. The results demonstrated that curcumin could effectively inhibit the growth of Raji cells in a dose- and time-dependent manner. Further studies indicated that curcumin treatment resulted in apoptosis of cells. Biochemical analysis showed that the expression of Bax, Bid and cytochrome C were up-regulated, while the expression of oncogene c-Myc was down regulated after curcumin treatment. Furthermore, poly (ADP-ribose) polymerase (PARP) cleavage was induced by the compound. Interestingly, the antiapoptotic Bcl-2 expression was not significantly changed in Raji cells after curcumin treatment. These results suggested that the mechanism of action of curcumin was to induce mitochondrial damage and therefore led to Raji cell apoptosis. We further investigated the in vivo effects of curcumin on the growth of xenograft tumors in nude mice. The results showed that curcumin could effectively inhibit tumor growth in the xenograft mouse model. The overall results showed that curcumin could suppress the growth of Burkitt's lymphoma cells in both in vitro and in vivo systems.

HT-29 암세포 이종이식으로 유발된 종양에 대한18β-Glycyrrhetinic Acid의 치료효과 (Therapeutic Effect of 18β-Glycyrrhetinic Acid on HT-29 Cancer Cell in a Murine Xenograft Model)

  • 한용문;김정현
    • 약학회지
    • /
    • 제59권4호
    • /
    • pp.164-169
    • /
    • 2015
  • In the present study, we determined the effect of $18{\beta}$-glycyrrhetinic acid ($18{\beta}$-GA) in the mice model bearing xenografts of HT-29 human colon cancer cell line. Data from the cytotoxicity assay displayed that $18{\beta}$-GA induced cell death in HT-29. The cytotoxicity was enhanced as the $18{\beta}$-GA treatment was prolonged. In case of 72 hrs treatment, $LD_{50}$ of $18{\beta}$-GA was approximately $90{\mu}M$, and the efficacy at $100{\mu}M$ of $18{\beta}$-GA appeared to be equivalent to that of doxorubicin at $1{\mu}M$. Based on the in vitro data, we tested the anti-tumor effect of $18{\beta}$-GA in thymic mice (Balb/c strain). Xenograft tumors were generated by subcutaneous injection of HT-29 ($3{\times}10^6cells/mouse$) to mice and the mice were treated intraperitoneally with $18{\beta}$-GA ($50{\mu}g/time/mouse$) every other day for 4 times. The tumor volumes were measured for a period of 14 days. Data displayed that the $18{\beta}$-GA treatment reduced the tumor volumes (P < 0.05) as compared to control mice. However, this activity was demolished when athymic mice (Balb/c nu/nu) were used instead of thymic mice. This observation appeared that T lymphocyte played an important role in the anti-tumor activity. In conclusion, our results indicate that $18{\beta}$-GA has anti-tumor activity in HT-29 tumor-bearing mice, which may be associated with T cells.

Hiwi Knockdown Inhibits the Growth of Lung Cancer in Nude Mice

  • Liang, Dong;Dong, Min;Hu, Lin-Jie;Fang, Ze-Hui;Xu, Xia;Shi, En-Hui;Yang, Yi-Ju
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권2호
    • /
    • pp.1067-1072
    • /
    • 2013
  • Hiwi, a human homologue of the Piwi family, plays an important role in stem cell self-renewal and is overexpressed in various human tumors. This study aimed to determine whether an RNA interference-based strategy to suppress Hiwi expression could inhibit tumor growth in a xenograft mouse model. A rare population of $SSC^{lo}\;Alde^{br}$ cells was isolated and identified as lung cancer stem cells in our previous study. Plasmids containing U6 promoter-driven shRNAs against Hiwi or control plasmids were successfully established. The xenograft tumor model was generated by subcutaneously inoculating with lung cancer stem cell $SSC^{lo}\;Alde^{br}$ cells. After the tumor size reached about 8 mm in diameter, shRNA plasmids were injected into the mice via the tail vein three times a week for two weeks, then xenograft tumor growth was assessed. In nude mice, intravenously delivery of Hiwi shRNA plasmids significantly inhibited tumor growth compared to treatment with control scrambled shRNA plasmids or the vehicle PBS. No mice died during the experiment and no adverse events were observed in mice administered the plasmids. Moreover, delivery of Hiwi shRNA plasmids resulted in a significant suppressed expression of Hiwi and ALDH-1 in xenograft tumor samples, based on immunohistochemical analysis. Thus, shRNA-mediated Hiwi gene silencing in lung cancer stem cells by an effective in vivo gene delivery strategy appeared to be an effective therapeutic approach for lung cancer, and may provide some useful clues for RNAi gene therapy in solid cancers.

Comparison of anticancer activities of Korean Red Ginseng-derived fractions

  • Baek, Kwang-Soo;Yi, Young-Su;Son, Young-Jin;Jeong, Deok;Sung, Nak Yoon;Aravinthan, Adithan;Kim, Jong-Hoon;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • 제41권3호
    • /
    • pp.386-391
    • /
    • 2017
  • Background: Korean Red Ginseng (KRG) is an ethnopharmacological plant that is traditionally used to improve the body's immune functions and ameliorate the symptoms of various diseases. However, the antitumorigenic effects of KRG and its underlying molecular and cellular mechanisms are not fully understood in terms of its individual components. In this study, in vitro and in vivo antitumorigenic activities of KRG were explored in water extract (WE), saponin fraction (SF), and nonsaponin fraction (NSF). Methods: In vitro antitumorigenic activities of WE, SF, and NSF of KRG were investigated in the C6 glioma cell line using cytotoxicity, migration, and proliferation assays. The underlying molecular mechanisms of KRG fractions were determined by examining the signaling cascades of apoptotic cell death by semiquantitative reverse transcriptase polymerase chain reaction and Western blot analysis. The in vivo antitumorigenic activities of WE, SF, and NSF were investigated in a xenograft mouse model. Results: SF induced apoptotic death of C6 glioma cells and suppressed migration and proliferation of C6 glioma cells, whereas WE and NSF neither induced apoptosis nor suppressed migration of C6 glioma cells. SF downregulated the expression of the anti-apoptotic gene B-cell lymphoma-2 (Bcl-2) and upregulated the expression of the pro-apoptotic gene Bcl-2-associated X protein (BAX) in C6 glioma cells but had no effect on the expression of the p53 tumor-suppressor gene. Moreover, SF treatment resulted in activation of caspase-3 as evidenced by increased levels of cleaved caspase-3. Finally, WE, SF, and NSF exhibited in vivo antitumorigenic activities in the xenograft mouse model by suppressing the growth of grafted CT-26 carcinoma cells without decreasing the animal body weight. Conclusion: These results suggest that WE, SF, and NSF of KRG are able to suppress tumor growth via different molecular and cellular mechanisms, including induction of apoptosis and activation of immune cells.

Gallic Acid Hindered Lung Cancer Progression by Inducing Cell Cycle Arrest and Apoptosis in A549 Lung Cancer Cells via PI3K/Akt Pathway

  • Ko, Eul-Bee;Jang, Yin-Gi;Kim, Cho-Won;Go, Ryeo-Eun;Lee, Hong Kyu;Choi, Kyung-Chul
    • Biomolecules & Therapeutics
    • /
    • 제30권2호
    • /
    • pp.151-161
    • /
    • 2022
  • This study elucidates the anti-cancer potential of gallic acid (GA) as a promising therapeutic agent that exerts its effect by regulating the PI3K/Akt pathway. To prove our research rationale, we used diverse experimental methods such as cell viability assay, colony formation assay, tumor spheroid formation assay, cell cycle analysis, TUNEL assay, Western blot analysis, xenograft mouse model and histological analysis. Treatment with GA inhibited cell proliferation in dose-dependent manner as measured by cell viability assay at 48 h. GA and cisplatin (CDDP) also inhibited colony formation and tumor spheroid formation. In addition, GA and CDDP induced apoptosis, as determined by the distribution of early and late apoptotic cells and DNA fragmentation. Western blot analysis revealed that inhibition of the PI3K/Akt pathway induced upregulation of p53 (tumor suppressor protein), which in turn regulated cell cycle related proteins such as p21, p27, Cyclin D1 and E1, and intrinsic apoptotic proteins such as Bax, Bcl-2 and cleaved caspase-3. The anti-cancer effect of GA was further confirmed in an in vivo mouse model. Intraperitoneal injection with GA for 4 weeks in an A549-derived tumor xenograft model reduced the size of tumor mass. Injection of them downregulated the expression of proliferating cell nuclear antigen and p-Akt, but upregulated the expression of cleaved caspase-3 in tumor tissues. Taken together, these results indicated that GA hindered lung cancer progression by inducing cell cycle arrest and apoptosis, suggesting that GA would be a potential therapeutic agent against non-small cell lung cancer.

Inhibition of Human Pancreatic Tumor Growth by Cytokine-Induced Killer Cells in Nude Mouse Xenograft Model

  • Kim, Ji Sung;Park, Yun Soo;Kim, Ju Young;Kim, Yong Guk;Kim, Yeon Jin;Lee, Hong Kyung;Kim, Hyung Sook;Hong, Jin Tae;Kim, Youngsoo;Han, Sang-Bae
    • IMMUNE NETWORK
    • /
    • 제12권6호
    • /
    • pp.247-252
    • /
    • 2012
  • Pancreatic cancer is the fourth commonest cause of cancer-related deaths in the world. However, no adequate therapy for pancreatic cancer has yet been found. In this study, the antitumor activity of cytokine-induced killer (CIK) cells against the human pancreatic cancer was evaluated in vitro and in vivo. Human peripheral blood mononuclear cells were cultured with IL-2-containing medium in anti-CD3 for 14 days. The resulting populations of CIK cells comprised 94% $CD3^+$, 4% $CD3^-CD56^+$, 41% $CD3^+CD56^+$, 11% $CD4^+$, and 73% $CD8^+$. This heterogeneous cell population was called cytokine-induced killer (CIK) cells. At an effector-target cell ratio of 100 : 1, CIK cells destroyed 51% of AsPC-1 human pancreatic cancer cells, as measured by the $^{51}Cr$-release assay. In addition, CIK cells at doses of 3 and 10 million cells per mouse inhibited 42% and 70% of AsPC-1 tumor growth in nude mouse xenograft assays, respectively. This study suggests that CIK cells may be used as an adoptive immunotherapy for pancreatic cancer patients.