• 제목/요약/키워드: xanthomonas oryzae

검색결과 160건 처리시간 0.019초

Simultaneous Detection of Three Bacterial Seed-Borne Diseases in Rice Using Multiplex Polymerase Chain Reaction

  • Kang, In Jeong;Kang, Mi-Hyung;Noh, Tae-Hwan;Shim, Hyeong Kwon;Shin, Dong Bum;Heu, Suggi
    • The Plant Pathology Journal
    • /
    • 제32권6호
    • /
    • pp.575-579
    • /
    • 2016
  • Burkholderia glumae (bacterial grain rot), Xanthomonas oryzae pv. oryzae (bacterial leaf blight), and Acidovorax avenae subsp. avenae (bacterial brown stripe) are major seedborne pathogens of rice. Based on the 16S and 23S rDNA sequences for A. avenae subsp. avenae and B. glumae, and transposase A gene sequence for X. oryzae pv. oryzae, three sets of primers had been designed to produce 402 bp for B. glumae, 490 bp for X. oryzae, and 290 bp for A. avenae subsp. avenae with the $63^{\circ}C$ as an optimum annealing temperature. Samples collected from naturally infected fields were detected with two bacteria, B. glumae and A. avenae subsp. avenae but X. oryzae pv. oryzae was not detected. This assay can be used to identify pathogens directly from infected seeds, and will be an effective tool for the identification of the three pathogens in rice plants.

Isolation and Characterization of Pathogen inducible Leucine Zipper containing Gene from rice (Oryza sativa L. cv. Dongjin)

  • Park, Sang-Ryeol;Song, Hae-Sook;Moon, Kyung-Mi;Hwang, Duk-Ju;Kim, Tae-Ho;Han, Seong-Sook;Go, Seung-Joo;Byun, Myung-Ok
    • 한국식물병리학회:학술대회논문집
    • /
    • 한국식물병리학회 2003년도 정기총회 및 추계학술발표회
    • /
    • pp.83.2-83
    • /
    • 2003
  • A full length cDNA, OsLEUZIP, encoding leucine zipper containing protein from rice EST of rice (0ryza sativa L. cv. Dongjin) treated Xanthomonas oryzae pv. oryzae 10331. OsLEUZIP contains 1,227 bp nucleotides and encodes a protein of 408 amino acid residues with predicted molecular weight of 47,229 Da. The deduced amino acid sequence of OsLEUZIP has consensus sequence of leucine zipper from PROSITE (PDOC00029), L-X(6)-L-X(6)-L-X(6) -L. OsLEUZIP gene were preferentially induced in rice during incompatible interaction with Xanthomonas oryzae pv. oryzae 10331 and Pyracuraria grisea KJ-301. Expression of OsLEUZIP gene was also induced by treatment of abiotics such as ethephon and ABA. Our data represented in this study suggesting that OsLEUZIP gene may play an important role in the rice defense-related. Further studies of this gene, overexpression in rice, yeast-two hybrid assay, electrophoretic mobility shift assay and northern blot analyses of transgenic plant, would be useful to elucidate the role of the OsLEUZIP gene in defense responses of rice.

  • PDF

Transgenic Rice Plants Expressing an Active Tobacco Mitogen-activated Protein Kinase Kinase Induce Multiple Defense Responses

  • Jeong, Jin-A;Yoo, Seung-Jin;Yang, Douck-Hee;Shin, Seo-Ho;Lee, Myung-Chul;Cho, Baik-Ho;Yang, Kwang-Yeol
    • The Plant Pathology Journal
    • /
    • 제24권4호
    • /
    • pp.375-383
    • /
    • 2008
  • It is well known that NtMEK2, a tobacco MAPK kinase, is the upstream kinase of both salicylic acid-induced protein kinase and wound-induced protein kinase. In addition, expression of $NtMEK2^{DD}$, a constitutively active mutant of NtMEK2, is known to induce multiple defense responses in tobacco. In this study, transgenic rice plants that contained an active or inactive mutant of NtMEK2 under the control of a steroid inducible promoter were generated and used to determine if a similar MAPK cascade is involved in disease resistance in rice. The expression of $NtMEK2^{DD}$ in transgenic rice plants resulted in HR-like cell death. The observed cell death was preceded by the activation of endogenous rice 48-kDa MBP kinase, which is also activated by Xanthomonas oryzae pv. oryzae, the bacterial blight pathogen of rice. In addition, prolonged activation of the MAPK induced the generation of hydrogen peroxide and up-regulated the expression of defense-related genes including the pathogenesis-related genes, peroxidases and glutathione S-transferases. These results demonstrate that NtMEK2 is functionally replaceable with rice MAPK kinase in inducing the activation of the downstream MAPK, which in turn induces multiple defense responses in rice.

Additive Main Effects and Multiplicative Interaction Analysis of Host-Pathogen Relationship in Rice-Bacterial Blight Pathosystem

  • Nayak, D.;Bose, L.K.;Singh, S.;Nayak, P.
    • The Plant Pathology Journal
    • /
    • 제24권3호
    • /
    • pp.337-351
    • /
    • 2008
  • Host-pathogen interaction in rice bacterial blight pathosystem was analyzed for a better understanding of their relationship and recognition of stable pathogenicity among the populations of Xanthomonas oryzae pv. oryzae. A total number of 52 bacterial strains isolated from diseased leaf samples collected from 12 rice growing states and one Union Territory of India, were inoculated on 16 rice varieties, each possessing known genes for resistance. Analysis of variance revealed that the host genotypes(G) accounted for largest(78.4%) proportion of the total sum of squares(SS), followed by 16.5% due to the pathogen isolates(I) and 5.1% due to the $I{\times}G$ interactions. Application of the Additive Main effects and Multiplicative Interaction(AMMI) model revealed that the first two interaction principal component axes(IPCA) accounted for 66.8% and 21.5% of the interaction SS, respectively. The biplot generated using the isolate and genotypic scores of the first two IPCAs revealed groups of host genotypes and pathogen isolates falling into four sectors. A group of five isolates with high virulence, high absolute IPCA-1 scores, moderate IPCA-2 scores, low AMMI stability index '$D_i$' values and minimal deviations from additive main effects displayed in AMMI biplot as well as response plot, were identified as possessing stable pathogenicity across 16 host genotypes. The largest group of 27 isolates with low virulence, small IPCA-1 as well as IPCA-2 scores, low $D_i$ values and minimal deviations from additive main effect predictions, possessed stable pathogenicity for low virulence. The AMMI analysis and biplot display facilitated in a better understanding of the host-pathogen interaction, adaptability of pathogen isolates to specific host genotypes, identification of isolates showing stable pathogenicity and most discriminating host genotypes, which could be useful in location specific breeding programs aiming at deployment of resistant host genotypes in bacterial blight disease control strategies.

Xanthomonas oryzae pv. oryzae RpfE Regulates Virulence and Carbon Source Utilization without Change of the DSF Production

  • Cho, Jung-Hee;Yoon, Joo-Mi;Lee, Sang-Won;Noh, Young-Hee;Cha, Jae-Soon
    • The Plant Pathology Journal
    • /
    • 제29권4호
    • /
    • pp.364-373
    • /
    • 2013
  • It has been known that most regulation of pathogenicity factor (rpf ) genes in xanthomonads regulates virulence in response to the diffusible signal factor, DSF. Although many rpf genes have been functionally characterized, the function of rpfE is still unknown. We cloned the rpfE gene from a Xanthomonas oryzae pv. oryzae (Xoo) Korean race KACC10859 and generated mutant strains to elucidate the role of RpfE with respect to the rpf system. Through experiments using the rpfE-deficient mutant strain, we found that mutation in rpfE gene in Xoo reduced virulence, swarm motility, and production of virulence factors such as cellulase and extracellular polysaccharide. Disease progress by the rpfE-deficient mutant strain was significantly slowed compared to disease progress by the wild type and the number of the rpfE-deficient mutant strain was lower than that of the wild type in the early phase of infection in the inoculated rice leaf. The rpfE mutant strain was unable to utilize sucrose or xylose as carbon sources efficiently in culture. The mutation in rpfE, however, did not affect DSF synthesis. Our results suggest that the rpfE gene regulates the virulence of Xoo under different nutrient conditions without change of DSF production.

Resistance Function of Rice Lipid Transfer Protein LTP110

  • Ge, Xiaochun;Chen, Jichao;Li, Ning;Lin, Yi;Sun, Chongrong;Cao, Kaiming
    • BMB Reports
    • /
    • 제36권6호
    • /
    • pp.603-607
    • /
    • 2003
  • Abstract Plant lipid transfer proteins (LTPs) are a class of proteins whose functions are still unknown. Some are proposed to have antimicrobial activities. To understand whether LTP110, a rice LTP that we previously identified from rice leaves, plays a role in the protection function against some serious rice pathogens, we investigated the antifungal and antibacterial properties of LTP110. A cDNA sequence, encoding the mature peptide of LTP110, was cloned into the Impact-CN prokaryotic expression system. The purified protein was used for an in vitro inhibition test against rice pathogens, Pyricularia oryzae and Xanthomonas oryzae. The results showed that LTP110 inhibited the germination of Pyricularia oryzae spores, and its inhibitory activity decreased in the presence of a divalent cation. This suggests that the antifungal activity is affected by ions in the media; LTP110 only slightly inhibited the growth of Xanthomonas oryzae. However, the addition of LTP110 to cultured Chinese hamster ovarian cells did not retard growth, suggesting that the toxicity of LTP110 is only restricted to some cell types. Its antimicrobial activity is potentially due to interactions between LTP and microbe-specific structures.

방사선을 이용한 벼 흰잎마름병 저항성 돌연변이 벼 계통의 선발 (Screening of Gamma Radiation-Induced Pathogen Resistance Rice Lines against Xanthomonas oryzae pv. oryzae)

  • 임찬주;이하연;김웅범;아마드 라자;문제선;김동섭;권석윤
    • 방사선산업학회지
    • /
    • 제4권3호
    • /
    • pp.209-213
    • /
    • 2010
  • Bacterial blight is one of the most serious diseases of rice (Oryza sativa L.), and it has been known that Xanthomonas oryzae pv. oryzae (Xoo) causes this disease symptom. To develop resistance rice cultivars against Xoo, 3,000 lines of $M_3$ mutants, which were irradiated with gamma ray, were tested by 'scissor-dip method' primarily, and 191 putative resistant lines were selected. In $M_4$ generation, these lines were screened again with various ways such as measuring of symptom of bacterial blight in leaf, number of tiller, fresh weight, and phenotypic segregation ratio in next generation. Finally, six resistance lines were selected. RT-PCR analysis revealed that these lines displayed high level of R-genes such as Xa21, Pi36, and Pi-ta. These results indicate that mutations by gamma ray cause disruptions of regulatory signal transduction systems of these R-genes. Furthermore, these selected mutants could be useful for the development of rice cultivar resistant to Xoo.

Effect of GlycinecinA on the Control of Bacterial Leaf Spot of Red Pepper and Bacterial Leaf Blight of Rice

  • Jeon, Yong-Ho;Moonjae Cho;Cho, Yong-Sup;Ingyu Hwang
    • The Plant Pathology Journal
    • /
    • 제17권5호
    • /
    • pp.249-256
    • /
    • 2001
  • Xanthomonas axonopodis pv. glycines 8ra produces a bacteriocin called glycinecinA, which specifically inhibits the growth of bacteria belonging to Xanthomonas species. GlycinecinA was produced by culturing Escherichia coli DH5 containing biosynthetic genes for glycinecinA, and was tested for its control effect against X. vesicatoria on red pepper and X. oryzae pv. oryzae on rice. The bacteriocin activity was much higher in the cell extract than in the supernatant. It reached a maximum level at the stationary phase, ws maintained up to 2 months at room temperature and approximately 10 months at $4^{\circ}$. The optimum concentration of glycinecinA for the control in the greenhouse and in the field was 12,800 AU/ml. In this study, the activity of glycinecinA on rice and red pepper leaves continued for 7-8 days, during which the pathogen populations remained at low levels. Bacterial leaf spot of red pepper and bacterial leaf blight of rice were significantly reduced by the bacteriocin treatments. The control efficacy was as high as, or even higher than, the chemical treatment of copper hydroxide. These results suggest that the bacteriocin is a potential control agent for bacterial diseases.

  • PDF