• Title/Summary/Keyword: x-ray diffraction method

Search Result 2,303, Processing Time 0.032 seconds

A Study on Residual Stress for Fatigue Fracture Surface in General Purpose Structural Steel using X-ray Diffraction (X-선 회절을 이용한 피로하중을 받는 일반구조용강의 잔류응력에 관한 연구)

  • 조석수;장득열;주원식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.8
    • /
    • pp.248-261
    • /
    • 1999
  • The fatigue life of mechanical components and structures has been influenced by mechanical, material and environmental conditions. It is important to search out the load type and size for accurate cause of fracture at the damaged surface of material. The fractographic method by x-ray diffraction can utilize residual stress $\sigma$_r and half-value breadth B and find out the types and the mechanical conditions of fracture. This study showed the relationship between fracture mechanical parameters $\Delta$K, $K_{max}$ and X-ray residual stress $\sigma$_r for normalized SS41 steel with homogeneous crystal structure and M.E.F. dual phase steel(martensite encapsulated islands of ferrite). The fatigue crack propagation tests were carried out under stress ratios 0.1 and 0.5. The x-ray diffraction technique according to crack propatation direction was applied to fatigue fractured surface. Residual stress $\sigma$_r was independent on stress ratios by arrangement of $\Delta$K. The equation of $\sigma$_r$\Delta$K was established by the experimental data. Therefore, fracture mechanical parameters can be estimated can be estimated by the measurement of X-ray parameters.

  • PDF

A Study on the Failure Mechanism of Turbine Blade using X-Ray Diffraction and FEM (X선 회절과 유한요소법을 이용한 터빈 블레이드의 파괴기구에 관한 연구)

  • Kim, Seong-Ung;Hong, Sun-Hyeok;Jeon, Hyeong-Yong;Jo, Seok-Su;Ju, Won-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1645-1652
    • /
    • 2002
  • The failure analysis on fractured parts is divided into the qualitative method by naked eyes and metallurgical microscope etc. and the quantitative method by SEM and X-ray diffraction etc. X-ray fractography can be applied to contaminated surface as well as clean surface and gain the plastic deformation and the residual stress near the fractured surface. Turbine blade is subject to cyclic bending force by steam pressure and suffers fatigue damage according to the increasing operating time. Therefore, to clean up the fracture mechanism of torsion-mounted blade in nuclear plant, the fatigue and the X-ray diffraction test was performed on the 12%Cr steel fur turbine blade and the fractured parts. The correlation of X-ray parameter and fracture mechanics parameter was determined, and then the load applied to actual broken turbine blade was predicted. Failure analysis was performed by contact stress analysis and Goodman diagram of torsion-mounted blade.

Evaluation of Thermal Degradation of 2.25Cr-1Mo Steel Using Ultrasonic Nonlinear Effect and X-ray Diffraction Method (초음파 비선형 음향 효과 및 X-선 회절법을 이용한 2.25Cr-1Mo 강의 열화 손상 평가)

  • Kim, Duk-Hee;Park, Un-Su;Park, Ik-Keun;Byeon, Jai-Won;Kwun, Sook-In
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.4
    • /
    • pp.71-79
    • /
    • 2002
  • It was attempted to evaluate the degree of degradation of thermally aged 2.25-1Mo steek by ultrasonic monlinear parameter(UNP) measurement and X-ray diffraction analysis of extracted carbide. Artificial aging was performed to simulate the microstructural degradation in 2.25Cr-1Mo steel arising from long time exposure at $540{\circ}C$. Microstructural analysis (number of carbides per unit area) and measurements of mechanical properties(Vickers hardness, DBTT) and degradation evaluation parameters(UNP and intensity ration of X-ray diffraction peak of electrolytically extracted carbide) were performed. Both of UNP and intensity ratio of X-ray diffraction peak for M6C carbide to that of M23C6 carbide(IR) increased abruptly in the initial 1000 hour of aging and then changed little. UNP and IR were proposed as potential parameters to evaluate the degree of aging degradation of 2.25Cr-1Mo steel.

A Study of Practical and Optimized Mineral Quantification (실용적이고 최적화된 광물정량분석법 연구)

  • Son, Byeong-Kook;An, Gi-O
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.4
    • /
    • pp.227-239
    • /
    • 2021
  • A practical and effective method of X-ray powder diffraction analysis was investigated for quantitative analysis of the mineral content of natural samples. Sample mounting experiments were conducted to select the best randomly oriented powder sample mount. A comparative experiment was also made between a reference intensity ratio (RIR) method, which compares a single peak intensity with standard material, and the Rietveld method, which calculates a full X-ray diffraction pattern, to search for the effective method of mineral quantification. In addition, samples containing amorphous minerals were quantitatively analyzed by the Rietveld method and the efficiency was reviewed. As a result of the study, the optimal random orientation could be reached by the side mounting method. The Rietveld method using the full pattern of X-ray diffraction was more suitable for mineral quantitative analysis, rather than the RIR method using a specific peak. However, either method could depend on the analyst's experience in addition to analytical technique. Moreover, amorphous minerals can be quantitatively analyzed by the Rietveld method, and the analysis results make the geological analysis possible.

Stress Determination in Epitaxial Lead Titanate Films by Asymmetric X-ray Diffraction Method

  • Uchida, Hiroshi;Kiguchi, Takanori;Wakiya, Naoki;Shinozaki, Kazuo;Mizutani, Nobuyasu
    • The Korean Journal of Ceramics
    • /
    • v.6 no.4
    • /
    • pp.385-389
    • /
    • 2000
  • Residual stresses in epitaxial films were measured by X-ray diffraction method. Lattice strains of the (hkl) planes measured along particular Ψ-angles were converted to the in-plane stress according to the equation of stress-strain tensor conversion. Residual tensile stresses were observed in epitaxial PbTiO$_3$ films deposited on (100) SrTiO$_3$ substrate. Tensile stresses approximately 0.9 GPa were measured in Pb-rich films, while it increased to approximately 2.0 GPa with the decreasing of Pb content in the case of Pb-poor films, which ascribed to the formation of lead and oxygen vacancies (expressed as x in Pb$_1-x$TiO$_3-x$).

  • PDF

Effect of Thermal Cycle on Strength of Ceramic and Metal Joint (세라믹/금속접합재의 강도에 미치는 열사이클 영향)

  • 박영철;오세욱;김광영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.7
    • /
    • pp.1664-1673
    • /
    • 1994
  • As a fundamental study on effects of thermal-cycles on residual stress of ceramics/metal joints, residual stresses in $Si_3N_4$/SUS304 joint specimens were measured before and single thermal-cycle by X-ray diffraction method and finite element method(FEM). The residual stress was found to increase after single thermal-cycle, which was agreeable with the results of residual stress measurement by X-ray diffraction method and residual stress analysis by finite element method. After the residual stress measurement, 4-point bending tests were performed. The relationship between the bending strength, the thermal-cycle temperature and hold time was examined. The bending strength was found to decrease with the increase of residual stress in linear relation.

The analytical application for cement using X-Ray diffraction and X-Ray fluorescence spectrometer (X-Ray Diffraction과 X-Ray Fluorescence를 이용한 시멘트 비교 분석)

  • Jung, Ji Eun;Jang, Yu Rim;Kim, Ki-Wook;Heo, Sangcheol;Min, Ji-Sook
    • Analytical Science and Technology
    • /
    • v.26 no.5
    • /
    • pp.340-351
    • /
    • 2013
  • The chemical element and structural characterization of different types of cements and its brick stones are been investigated under forensic aspects using X-ray florescence (XRF) and X-ray diffraction (XRD) spectrometer. The XRF provides rapid compositional data for controlling almost all stages of raw materials, clinker and cement. The decisive advantage of XRD methods is based on the unique character of the diffraction patterns of crystalline substances, the ability to distinguish between elements and their oxides, and the possibility to identify chemical compounds, polymeric forms, and mixed crystals by non-destructive examination. Therefore, combination of these examinations is useful and able to apply for the forensic analysis in comparison of cements and brick stones. There are more study remained to determine the viability of method for forensic analysis of brick stones and the limits of the discrimination that can be achieved.

Fraction Analysis of ε and γ'-iron Nitride in Compound Layer Using X-ray Diffraction (X-선 회절법에 의한 철-질소 화합물층의 ε과 γ'상 분율 해석)

  • Kim, Yoon-Kee
    • Korean Journal of Materials Research
    • /
    • v.16 no.2
    • /
    • pp.85-91
    • /
    • 2006
  • The fraction of $\varepsilon\;and\;\gamma$'-iron nitride in compound layer is predicted by x-ray diffraction using direct comparison method. The validity of formulation models was checked by comparing calculated results with metallographic analysis of iron nitride compound layer grown on steel S45C by gas nitriding. The fraction of $\varepsilon$ calculated by the three phase model, porous-$Fe_3N$/ dense-$Fe_3N$/ mixed layer with $Fe_3N\;and\;Fe_4N$, is 80 percent of that analyzed by etching technique. The $\varepsilon$ fraction predicted by mixed layer model is 122 percent of that measured by microscope.

Microscopic analysis of gas hydrates using X-ray diffraction method (X-ray diffraction을 이용한 가스 하이드레이트 미세구조 분석)

  • Lee, Jong-Won;Seol, Ji-Woong;Koh, Dong-Yeun;Lee, Huen
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.178-181
    • /
    • 2008
  • 다양한 조성을 갖는 $CH_4+CO_2$ 혼합 기체 하이드레이트 샘플의 미세 구조 분석을 위하여 X-ray 회절 방법을 이용하였다. X-ray 회절 분석을 이용할 경우, 하이드레이트로의 전환율과 같은 정성적인 분석뿐 아니라 각 객체별 cage occupancy와 같은 정량적인 분석까지도 가능한 것으로 나타났다. 또한 이렇게 얻어진 X-ray 회절 분석 결과 및 refinement 결과를 $^{13}C$ 고체 NMR 방법과 교차 비교함으로써 측정 결과의 신뢰도를 높이려 하였다. 얻어진 분석 결과는 이후 가스 하이드레이트를 이용한 다양한 연구 분야에서 저장용량 평가 및 객체 점유율과 같은 미세 구조 정보를 얻는 데에 유용하게 사용될 것으로 전망된다.

  • PDF

The Characteristics of Residual Stresses in the Welded Joint of P92 Steel for Fossil Power Plant by the X-ray Diffraction (X-ray 회절을 이용한 화력발전소용 P92 강 용접부의 잔류응력 특성)

  • Hyun, Jung-Seob;Yoo, Keun-Bong;Choi, Hyun-Sun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.7
    • /
    • pp.116-123
    • /
    • 2008
  • In the fossil power plant, the reliability of the components which consist of the many welded parts depends on the quality of welding. The residual stress is occurred by the heat flux of high temperature during weld process. This decreases the mechanical properties as the strength of fatigue and fracture or causes the stress corrosion cracking and fatigue fracture. Especially, the accidents due to the residual stress occurred at the weld parts of high-temperature and high-pressure pipes and steam headers. Also, the residual stress of the welded part in the recently constructed power plants has been brought into relief as the cause of various accidents. The aim of this study is the measurement of the residual stress using the x-ray diffraction method. The merits of this are more accurate and applicable than other methods. The materials used for the study is P92 steel for the use of high temperature pipe on super critical condition. The variables of tests are the post-weld heat treatment, the surface roughness and the depth from the original surface. The test results were analyzed by the distributed characteristics of the full width at half maximum intensity (FWHM) in x-ray diffraction intensity curve and by the relation of hardness with FWHM.