DOI QR코드

DOI QR Code

A Study of Practical and Optimized Mineral Quantification

실용적이고 최적화된 광물정량분석법 연구

  • Son, Byeong-Kook (Korea Institute and Mineral Resources (KIGAM)) ;
  • An, Gi-O (Korea Institute and Mineral Resources (KIGAM))
  • Received : 2021.10.20
  • Accepted : 2021.11.12
  • Published : 2021.12.31

Abstract

A practical and effective method of X-ray powder diffraction analysis was investigated for quantitative analysis of the mineral content of natural samples. Sample mounting experiments were conducted to select the best randomly oriented powder sample mount. A comparative experiment was also made between a reference intensity ratio (RIR) method, which compares a single peak intensity with standard material, and the Rietveld method, which calculates a full X-ray diffraction pattern, to search for the effective method of mineral quantification. In addition, samples containing amorphous minerals were quantitatively analyzed by the Rietveld method and the efficiency was reviewed. As a result of the study, the optimal random orientation could be reached by the side mounting method. The Rietveld method using the full pattern of X-ray diffraction was more suitable for mineral quantitative analysis, rather than the RIR method using a specific peak. However, either method could depend on the analyst's experience in addition to analytical technique. Moreover, amorphous minerals can be quantitatively analyzed by the Rietveld method, and the analysis results make the geological analysis possible.

자연산 시료의 광물함량을 X-선 분말회절분석에 의하여 실용적이고 효과적으로 정량분석하는 방법에 대하여 연구하였다. 이를 위하여 무작위 배향된 분말시료 마운트(randomly oriented powder sample mount)를 최적으로 제작하는 실험을 하였으며, 단일 피크강도를 표준물질과 비교하여 정량분석하는 레퍼런스 강도비(RIR) 방법과 X-선 회절도의 전패턴을 계산하는 리트벨드 방법의 효율성을 비교하는 실험을 수행 하였다. 또한, 비정질 광물이 포함된 시료를 리트벨드 방법에 의하여 정량분석하고 효율성을 검토하였다. 연구결과, 측면 마운팅(side mounting) 방법에 의하여 최적의 무작위 배향(random orientation)에 도달할 수 있었다. 또한, 특정 피크를 사용하는 RIR방법보다는 X-선 회절도의 전패턴을 사용하는 리트벨드 방법이 정량분석에 더 적합하였다. 그러나 어느 방법이든 분석기술 뿐만 아니라 분석자의 숙련된 경험을 필요로 한다. 리트벨드 방법에 의해 비정질 광물도 정량분석할 수 있었으며 분석결과는 지질해석을 가능하게 하였다.

Keywords

Acknowledgement

이 연구는 한국지질자원연구원의 연구과제 "국내 대륙붕 3차원 석유시스템 평가 및 셰일가스전 EGR+ 원천기술 개발(과제번호 21-3311)" 사업의 지원으로 수행되었다. 원고는 두 분의 심사자와 편집위원의 세심한 지적에 의하여 개선되었다. 심사진과 편집위원장께 감사드린다.

References

  1. Biscaye, P.E., 1965, Mineralogy and sedimentation of recent deep sea clay in the Atlantic ocean and adjacent seas and oceans. Geological Society of America Bulletin, 76, 803-832. https://doi.org/10.1130/0016-7606(1965)76[803:MASORD]2.0.CO;2
  2. Chung, F.H., 1974a, Quantitative interpretation of X-ray diffraction patterns of mixtures. I. Matrix-flushing method for quantitative multicomponent analysis. Journal of Applied Crystallography, 7, 519-525. https://doi.org/10.1107/S0021889874010375
  3. Chung, F.H., 1974b, Quantitative interpretation of X-ray diffraction patterns of mixtures. II. Adiabatic principle of X-ray diffraction analysis of mixtures. Journal of Applied Crystallography, 7, 526-531. https://doi.org/10.1107/S0021889874010387
  4. Davis, B.L. and Smith, D.K., 1988, Tables of experimental reference intensity ratios. Powder Diffraction, 3, 206-208.
  5. Davis, B.L. and Smith, D.K. and Holomany, M.A., 1989, Tables of experimental reference intensity ratios, Table no.2 December, 1989.. Powder Diffraction, 4, 201-205. https://doi.org/10.1017/S0885715600013725
  6. Eslinger, E. and Pevear, D., 1988, Clay minerals for petroleum geologists and engineers. SEPM Society for Sedimentary Geology, SEPM short course notes, No. 22, 413p.
  7. Hillier, S, 2003, Quantitative analysis of clay and other minerals in sandstones by X-ray powder diffraction (XRPD). International Association of Sedimentology, Special Publication, 34, 213-251.
  8. Hillier, S, 2000, Accurate quantitative analysis of clay and other minerals in sandstones by XRD: comparison of a Rietveld and a reference intensity ratio (RIR) method and the importance od sample preparation. Clay Minerals, 35, 291-302. https://doi.org/10.1180/000985500546666
  9. Hillier, S, 1999, Use of a air brush to spray dry samples for X-ray powder diffraction. Clay Minerals, 34, 127-135. https://doi.org/10.1180/claymin.1999.034.1.14
  10. Klug, H.P. and Alexander, L.E., 1974, X-ray diffraction procedures for polycrystalline and amorphous materials. Wiley, New York, 966p.
  11. McMurdie, H.F., Morris, M.C., Evans, E.H., Paretzkin, B. and Wong-Ng, W., 1986, Methods of producing standard X-ray diffraction powder patterns. Powder Diffraction, 1, 40-43.
  12. Moore, D.M, and Reynolds, R.C.Jr., 1997, X-ray diffraction and the identification and analysis of clay minerals. 2nd edition, Oxford University Press, New York, 378p.
  13. Raven, M.D. and Self, P.G., 2017, Outcomes of 12 years of the Reynolds cup quantitative mineral analysis round robin. Clays and Clay Minerals, 65, 122-134. https://doi.org/10.1346/CCMN.2017.064054
  14. Rietveld, H.M., 1969, A profile refinement method for Nuclear and Magnetic tructure. Journal of Applied Crystallography, 2, 65-71. https://doi.org/10.1107/S0021889869006558
  15. Reynolds, R.C. Jr., 1989, Principles and techniques of quatitative analysis of clay minerals by X-ray powder diffraction. In: Quantitative mineral analysis of clay minerals, Clay Mineral Society Workshop Lecture Vol. 1 (Ed; D.R. Pevear and F.A. Mumton), Clay Minerals Society, Evergreen, CO, 4-36.
  16. Shultz, L.G., 1964, Quantitative interpretation of mineralogical composition from X-ray and chemical data for the Pierre shale. US Geological Survey Professional Paper, 391-C, 1-31.
  17. Snyder, R.L., 1992, The use of reference intensity ratio in X-ray quantitative analysis. Powder Diffraction, 7, 186-193. https://doi.org/10.1017/S0885715600018686
  18. Son, B.-K., Yoshimura, T., and Fukasawa, H., 2001, Diagenesis of dioctahedral and trioctahedral smectites from alternating beds in Miocene to Pleistocene rocks of the Niigata basin, Japan. Clays and Clay Minerals, 49, 333-346. https://doi.org/10.1346/CCMN.2001.0490407
  19. Son, B.-K., 2005, A random powder mounting method for accurate X-ray mineral quantification. Proceedings of the Annual Joint Conference, Mineralogical Society of Korea and Petrological Society of Korea, Daegu, Korea, 36.
  20. Son, B.-K., 2007, Methods and importance of mineral quantification. Journal of the Mineral Society of Korea (Mineral and Industry), 20, 19-27.
  21. Son, B.-K., Kim, H.-J., and Ahn, G.-O., 2009, Mineral composition of the sediment of Ulleung Basin, Korea. Journal of the Mineral Society of Korea, 22, 115-127.
  22. Taylor, J.C., 1993, Computer program for standardless quantitative analysis of minerals using the full powder diffraction profile. Powder Diffraction, 6, 2-9. https://doi.org/10.1017/S0885715600016778
  23. Taylor, J.C. and Hinczak, I., 2006, Rietveld made easy. Sietronics Pty Limited, Canberra, 201p.
  24. Wilson, M.J., 1987, A handbook of determinative methods in clay mineralogy. Blackie and Son, New York, 308p.
  25. Zevin, L.S. and Kimmel, G., 1995, Quantitative X-ray diffractometry. Springer-Verlag, New York, 372p.
  26. Zhang, G., Germain, J.T., Martin, T. and Whittle, A.J., 2003, A simple sample-mounting method for random powder X-ray diffraction. Clays and Clay Minerals, 51, 218-225. https://doi.org/10.1346/CCMN.2003.0510212