• Title/Summary/Keyword: x-by-wire

Search Result 240, Processing Time 0.028 seconds

One-step Physical Method for Synthesis of Cu Nanofluid in Ethylene Glycol

  • Bac, L.H.;Yun, K.S.;Kim, J.S.;Kim, J.C.;Rhee, C.K.
    • Journal of Powder Materials
    • /
    • v.17 no.6
    • /
    • pp.464-469
    • /
    • 2010
  • The Cu nanofluid in ethylene glycol was prepared by electrical explosion of wire, a novel one-step method. The X-ray diffraction, field emission scanning electron microscope and transmission electron microscope were used to study the properties of Cu nanoparticles. The results showed that the nanoparticles were consisted of pure face-centered cubic structure and near spherical shape with average grain size of 65 nm. Ultraviolet-visible spectroscopy (UV-Vis) confirmed Cu nanoparticles with a single absorbance peak of Cu surface plasmon resonance band at 600 nm. The nanofluid was found to be stable due to high positive zeta potential value, +51 mV. The backscattering level of nanofluid in static stationary was decreased about 2% for 5 days. The thermal conductivity measurement showed that Cu-ethylene glycol nanofluid with low concentration of nanoparticles had higher thermal conductivity than based fluid. The enhancement of thermal conductivity of nanofluid at a volume fraction of 0.1% was approximately 5.2%.

ZnO Micro/Nanocrystals Synthesized by Thermal Evaporation Method using Mn Powder as the Reducing Agent (Mn 분말을 환원제로 사용하여 열증발법에 의해 생성된 ZnO 마이크로/나노결정)

  • So, Ho-Jin;Lee, Geun-Hyoung
    • Korean Journal of Materials Research
    • /
    • v.29 no.7
    • /
    • pp.432-436
    • /
    • 2019
  • Zinc oxide(ZnO) micro/nanocrystals are grown via thermal evaporation of ZnO powder mixed with Mn powder, which is used as a reducing agent. The ZnO/Mn powder mixture produces ZnO micro/nanocrystals with diverse morphologies such as rods, wires, belts, and spherical shapes. Rod-shaped ZnO micro/nanocrystals, which have an average diameter of 360 nm and an average length of about $12{\mu}m$, are fabricated at a temperature as low as $800^{\circ}C$ due to the reducibility of Mn. Wire-and belt-like ZnO micro/nanocrystals with length of $3{\mu}m$ are formed at $900^{\circ}C$ and $1,000^{\circ}C$. When the growth temperature is $1,100^{\circ}C$, spherical shaped ZnO crystals having a diameter of 150 nm are synthesized. X-ray diffraction patterns reveal that ZnO had hexagonal wurtzite crystal structure. A strong ultraviolet emission peak and a weak visible emission band are observed in the cathodoluminescence spectra of the rod- and wire-shaped ZnO crystals, while visible emission is detected for the spherical shaped ZnO crystals.

Preparation of YBa$_2Cu_#O_x$ films by MOCVD using single liquid solution source (단일액상원료를 사용하는 MOCVD법에 의한 YBa$_2Cu_3O_x$ 박막 제조에 관한 연구)

  • Kim, Bo-Ryoun;Lee, Hee-Gyoun;Hong, Gye-Won;Jee, Young-A;Shin, Hyung-Shik
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.129-132
    • /
    • 1999
  • A new single solution source MOCVD technique for the deposition of YBCO film has been developed, using a ultrasonic atomizer to feed the precursors into an evaporation zone. This method being investigated as a basis for future long wire fabrication, for example the electric power use, the magnatic applications, etc.. YBCO films were prepared on MgO(100) substrate, using mixture of Y, Ba, and Cu ${\beta}$ -diketonate chelate was dissolve in tetrahydrofuran as a solution sources. X-ray diffraction measurement indicated that the thin film grew epitaxially with the c-axis orientation perpandicular to the surface of the surface.

  • PDF

Design optimization of vibration isolation system through minimization of vibration power flow

  • Xie, Shilin;Or, Siu Wing;Chan, Helen Lai Wa;Choy, Ping Kong;Liu, Peter Chou Kee
    • Structural Engineering and Mechanics
    • /
    • v.28 no.6
    • /
    • pp.677-694
    • /
    • 2008
  • A vibration power minimization model is developed, based on the mobility matrix method, for a vibration isolation system consisting of a vibrating source placed on an elastic support structure through multiple resilient mounts. This model is applied to investigate the design optimization of an X-Y motion stage-based vibration isolation system used in semiconductor wire-bonding equipment. By varying the stiffness coefficients of the resilient mounts while constraining the dynamic displacement amplitudes of the X-Y motion stage, the total power flow from the X-Y motion stage (the vibrating source) to the equipment table (the elastic support structure) is minimized at each frequency interval in the concerned frequency range for different stiffnesses of the equipment table. The results show that when the equipment table is relatively flexible, the optimal design based on the proposed vibration power inimization model gives significantly little power flow than that obtained using a conventional vibration force minimization model at some critical frequencies. When the equipment table is rigid enough, both models provide almost the same predictions on the total power flow.

A PHOTOELASTIC STUDY ON THE INITIAL STRESS DISTRIBUTION OF 3 TYPES TMA MULTI-VERTICAL LOOP ARCH WIRE (TMA wire로 제작된 3종류의 MVLAW(Multi-Vertical Loop Arch Wire)의 초기응력분포에 관한 광탄성학적 연구)

  • Lee, Hyeong-Chul;Chun, Youn-Sic
    • The korean journal of orthodontics
    • /
    • v.25 no.1 s.48
    • /
    • pp.73-85
    • /
    • 1995
  • Multi-Vertical Loop Arch Wire(MVLAW) is a kind of appliance for uprighting the mesially inclined posterior teeth axes simultaneously. In this study MVLAW was classified as 3 types by modifing the vertical loop design and named type A, B and C. Each MVLAW was fabricated from .017'x.025' TMA wire and preactivated at the distal end of the open vertical loop with 10 degree tip-back bend(type B has an electric welding stop at the distal end of each loop and type C has no electric welding stop). Type A MVLAW was preactivated at the apex of each open vertical loop with 10 degree tip-back bend(the electric welding stop of type A is positionod at the mesial side of each loop). The aim of the present study was to identify when and which MVLAW is more effective to correct the buccal segment axes simultaneously. The Photoelastic overview of the upper and lower right quadrant showed that stress concentrations were observed in its photoelastic model. The obtained results were as follows : 1. Higher level compression can be seen clearly at the distal curvature of the lower 1st and 2nd molar when A type MVLAW was applied without short class m elastic, but mild compression cannot be seen at the distal curvature of lower anterior teeth using the class m elastic. 2. Higher concentration was presented at the mesial curvature from the lower 1st premolar to the 2nd molar than the anterior teeth when B type MVLAW without short class III elastic was applied, but using the short class III elastic, higher concentration of compression was presented in the anterior teeth area. 3. Areas of higher compression and tension were not observed at the mesial and distal curvature of the entire 1ower teeth except lower central and lateral incisors in C type MVLAW without short class III elastic, but using the short class III elastic, higher concentration was seen at the mesial curvature of the lower 1st premolar and 1ower anterior teeth.

  • PDF

Comparison of transition temperature range and phase transformation behavior of nickel-titanium wires (니켈-타이타늄 호선의 상전이 온도 범위와 상전이 행동 비교)

  • Lee, Yu-Hyun;Lim, Bum-Soon;Lee, Yong-Keun;Kim, Cheol-We;Baek, Seung-Hak
    • The korean journal of orthodontics
    • /
    • v.40 no.1
    • /
    • pp.40-49
    • /
    • 2010
  • Objective: The aim of this research was to evaluate the mechanical properties (MP) and degree of the phase transformation (PT) of martensitic (M-NiTi), austenitic (A-NiTi) and thermodynamic nickel-titanium wire (T-NiTi). Methods: The samples consisted of $0.016\;{\times}\;0.022$ inch M-NiTi (Nitinol Classic, NC), A-NiTi (Optimalloy, OPTI) and T-NiTi (Neo-Sentalloy, NEO). Differential scanning calorimetry (DSC), three-point bending test, X-ray diffraction (XRD), and microstructure examination were used. Statistical evaluation was undertaken using ANOVA test. Results: In DSC analysis, OPTI and NEO showed two peaks in the heating curves and one peak in the cooling curves. However, NC revealed one single broad and weak peak in the heating and cooling curves. Austenite finishing ($A_f$) temperatures were $19.7^{\circ}C$ for OPTI, $24.6^{\circ}C$ for NEO and $52.4^{\circ}C$ for NC. In the three-point bending test, residual deflection was observed for NC, OPTI and NEO. The load ranges of NC and OPTI were broader and higher than NEO. XRD and microstructure analyses showed that OPTI and NEO had a mixture of martensite and austenite at temperatures below Martensite finishing ($M_f$). NEO and OPTI showed improved MP and PT behavior than NC. Conclusions: The mechanical and thermal behaviors of NiTi wire cannot be completely explained by the expected degree of PT because of complicated martensite variants and independent PT induced by heat and stress.

A Study on the Judgment of Fire Cause of Ballast for Fluorescent Lamp (형광등용 안정기의 화재원인 판정에 관한 연구)

  • 최충석;백동현
    • Fire Science and Engineering
    • /
    • v.14 no.3
    • /
    • pp.1-5
    • /
    • 2000
  • In this paper, we analyzed the fire hazard of the ballast for fluorescent lamp used as the indoor lighting. In the result of being analyzed the ballast wire by stereo microscope, many melting points were discovered, it was impossible to judge a cause with the naked eye. In the Thermal-deteriorated ballast wire, elongation structure disappeared at above $700^{\circ}$, and it only showed the enlarged appearance of the copper particle. On the metallurgical microscope of short wire, as it was confirmed the regulation of the columnar structure and the void growth at the center of boundary-face, we found that electrical short-circuit generated. Also, it was confirmed the melted part on the analysis using SEM(scanning electron microscope). Not only CuL and Cuk line that is composition factor of copper but also OK line was observed uniformly on the spectra analysis using EDX(energy dispersive x-ray spectroscopy). It means that oxygen took part in reaction at the recombination process.

  • PDF

Evaluation of Turbulent Models on the Swirling Flow of a Gun-Type Gas Burner According to the Mesh Size (격자크기에 따른 Gun식 가스버너의 스월유동에 대한 난류모델평가)

  • Kim, Jang-Kweon;Oh, Seok-Hyung
    • Journal of Power System Engineering
    • /
    • v.18 no.3
    • /
    • pp.59-65
    • /
    • 2014
  • The computational fluid dynamics was carried out to evaluate turbulent models on the swirling flow of a gun-type gas burner(GTGB) according to the mesh size. The commercial SC/Tetra software was used for a steady-state, incompressible and three-dimensional numerical analysis. In consequence, the velocity magnitude from the exit of a GTGB and the flowrate predicted by the turbulent models of MP k-${\varepsilon}$, Realizable k-${\varepsilon}$ and RNG k-${\varepsilon}$ agree with the results measured by an experiment very well. Moreover, the turbulent kinetic energy predicted by the turbulent model of standard k-${\varepsilon}$ with mesh type C only agrees with the experimental result very well along the radial distance. On the other hand, the detailed prediction of the information of swirling flow field near the exit of a GTGB at least needs a CFD analysis using a fairly large-sized mesh such as a mesh type C.

Changes in Contents and Composition of Dietary Fiber during Buckwheat Germination (메밀 발아 중 식이섬유 함량과 조성의 변화)

  • 이명헌;우순자
    • The Korean Journal of Food And Nutrition
    • /
    • v.7 no.4
    • /
    • pp.274-283
    • /
    • 1994
  • To provide the efficient application scheme of buckwheat dietary fiber and basic information of seed germination, buckwheat(Fagopyrum esculentum Moench) was germinated at 10$^{\circ}C$ for 7 days and the contents and composition of the total dietary fiber(TDF), insoluble dietary fiber(IDF), soluble dietary fiber(SDF) wire examined at 24 hour intervals. The TDF content in ungerminated seeds was 24.86o on dry weight basis. It decreased for the 1st day of germination, but gradually increased for 7 days afterwords. The contents of IDF and SDF in ungerminated seeds were 22.05, 1.42% respectively. The IDF and SDF contents decreased in the initial stage of germination, but then gradually increased. The composition of the IDF and SDF in the TDF during the germination period showed different tendencies. The IDF decreased with germination time until 5 days and then increased. The SDV increased until 5 days and then decreased gradually. The TDF contents obtained by AOAC method were generally higher than those obtained by Prosky method. The TDF contents obtained by the two method, however, were very closely correlated (r=0.9966, p< 0.01) The IDF(X1) and SDF(X2) showed the significant regression equation(p<0.01) with the root length(Y). The equation was Y: -12.6681+0.5089${\times}$ 1 $\div$ 0.6022Xa and R2 was 0.968.

  • PDF

Effect of Heat Treatment on the Surface Machined by W-EDM (고온 열처리가 와이어 컷 가공면에 미치는 영향)

  • Choi, K.K.;Lee, Y.S.
    • Transactions of Materials Processing
    • /
    • v.15 no.8 s.89
    • /
    • pp.539-543
    • /
    • 2006
  • Experimental studies are carried out in order to investigate the effects of heat treatment on the surface machined by W-EDM. In this work, two ways of heat treatment after W-EDM are considered. As a comparison, the machined surface by a traditional method such as milling/grinding is also considered. Thereby, specimens are prepared by four different machining methods. Those are (1) milling and then grinding, (2) wire-cut electric discharge machining (W-EDM), and (3) low temperature heat treatment or (4) high temperature heat treatment after W-EDM. The resulting surface roughness are measured and the changes of surface microstructures are investigated using the scanning electron microscope (SEM) with energy dispersive X-ray spectrometer (EDS). In general, heat treatment after W-EDM result in smoother surface and better chemical composition at the machined surface. Especially, high temperature tempering could remove defects in the thermally affected zone, which cause an overall deterioration of the surface machined by W-EDM.