• Title/Summary/Keyword: wsw

Search Result 65, Processing Time 0.026 seconds

Fault Plane Solutions of the Recent Earthquakes in the Northern Part of the Korean Peninsula

  • Lee, Min Jeong;Kyung, Jai Bok;Chi, Heon Cheol
    • Journal of the Korean earth science society
    • /
    • v.35 no.5
    • /
    • pp.354-361
    • /
    • 2014
  • Fault plane solutions in North Korea and the northern part of the Yellow Sea ($37.5^{\circ}N-40.5^{\circ}N$, $124.5^{\circ}E-128.5^{\circ}E$) was studied for the earthquakes that occurred from November, 2008 to May, 2013. The analysis was based on the data collected from seismic networks in Korea and China. Fault plane solutions were obtained from P and SH wave polarities and SH/P amplitude ratioes. Most earthquakes exhibited predominantly strike-slip fault characteristics with NNE-SSW or WNW-ESE nodal planes. The P-axes trends are mainly NE-SW or ENE-WSW direction in the northern part of the Yellow Sea and inland area of North Korea except some areas in the Hwanghae province. Fault plane solutions and main axis of stress field in the study region were similar to those observed in the southern part of the Korean Peninsula.

A Composite Fault-plane Solution of Microearthquakes in the Yangsan Fault Area during 1996 (1996년 양산단층 일대의 미소지진을 이용한 복합단층면해)

  • Lee, Gi Hwa;Jeong, Tae Ung
    • Journal of the Korean Geophysical Society
    • /
    • v.2 no.4
    • /
    • pp.235-240
    • /
    • 1999
  • From the seismic network data of the Korea Institute of Geology, Mining & Materials during 1995-1996, we derived a composite fault-plane solution of the microearthquakes occurred in the Yangsan fault area. The composite fault-plane solution of nine events shows the orientation of fault 15 ± 3°in strike, 60 ± 8°in dip and 140°in rake or 128 ± 3°in strike, 56 ± 8°in dip and 37°in rake. The compressional axis of the stress field trends ENE to WSW, and this field suggests strike-slip motion with thrust component. The result is consistent with the 1996 Yeong-weol event and the stress field in and around the Korean Peninsula, previously reported.

  • PDF

Fault Plane Solutions for the June 26, 1997 Kyong-ju Earthquake (1997년 6월 26일 경주지진의 단층면해 비교해석)

  • Chung, Tae-Woong;Kim, Woo-Han
    • Journal of the Korean Geophysical Society
    • /
    • v.3 no.4
    • /
    • pp.245-250
    • /
    • 2000
  • By using amplitude ratios (SV/P, SH/P, SV/SH) and P and S wave polarities, we obtained fault plane solutions of the June 26, 1997 Kyong-ju earthquake. The solutions show $150{\pm}4^{\circ}$ in strike, $63{\pm}6^{\circ}$ in dip and $65{\pm}7^{\circ}$ in rake, or $18{\pm}12^{\circ}$ in strike, $26{\pm}3^{\circ}$ in dip and $120{\pm}5^{\circ}$ in rake. This result implies the stress field trending ENE-WSW, which is remarkably consistent with the previous results obtained from the moment tensor inversion, and from the composite fault plane solution for the events occurred around the Yangsan fault area.

  • PDF

A source and phase identification study of the M/syb L/ 3.6 Cheolwon, Korea, earthquake occurred on December 10, 2002 (2002년 12월 10일 규모 3.6 철원지진의 진원요소 및 파상분석)

  • 김우한;박종찬;김성균;박창업
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.3-11
    • /
    • 2003
  • We analysed phases recorded by the M$_{L}$ 3.6 Cheolwon, Korea, earthquake occurred on the 10th of December, 2002 and computed source parameters such as hypocenter, origin time, earthquake magnitude and focal solutions. We used PmP and SmS phases to increase the accuracy in determinations of the hypocenter and origin time in addition to the phases such as Pg, Pn, Sg and Sn which are generally used in routine processes. The epicenter, depth, and origin time of the Cheolwon earthquake determined based on data of 11 stations within 200 km from the epicenter are 38.8108$^{\circ}$N, N, 127.2214'E, 11.955 km, and on 7:42:51.436. The earthquake magnitude obtained from all the stations is 3.6 M$_{L}$. The fault plane solution calculated based on data from 19 stations indicates slip process of a normal fault including strike-slip motion. The direction of compressional stress field has a large vertical component and a ESE-WNW direction of horizontal component, which is different from the mainly horizontal direction of main compressional stress field in the Korean Peninsula (ENE-WSW) obtained by previous studies.ies.s.

  • PDF

Source parameters for the December 13 1996 ML 4.5 Earthquake in Yeongwol, South Korea (1996년 12월 13일 ML 4.5 영월 지진의 지진원 상수)

  • Choi, Ho-Seon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.5
    • /
    • pp.23-29
    • /
    • 2009
  • On December 13, 1996, an earthquake with local magnitude (M$_L$) 4.5 occurred in the Yeongwol area of South Korea. The epicenter was 37.2545$^{\circ}$N and 128.7277$^{\circ}$E, which is located inside the Okcheon Fold Belt. The waveform inversion analysis was carried out to estimate source parameters of the event according to the filtering bandwidth of seismic data. Using 0.02$\sim$0.2 Hz filtering bandwidth, focal depth and seismic moment were estimated to be 6 km and 1.3$\times$10$^{16}$ N$\cdot$m, respectively. This seismic moment corresponds to the moment magnitude (M$_W$) 4.7. The focal mechanism by the waveform inversion and P wave first motion polarity analysis is a strike slip faulting including a small thrust component, and the direction of P-axis is ENE-WSW. The moment magnitude estimated by spectral analysis was 4.8, which is similar to that estimated by waveform inversion. Average stress drop was estimated to be 14.3 MPa.

Focal Mechanism in and around the Korean Peninsula (한반도 및 주변의 지진 메카니즘 특성)

  • Jun, Myung-Soon;Jeon, Jeong-Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.3
    • /
    • pp.198-202
    • /
    • 2010
  • In and around the Korean Peninsula, 18 intraplate earthquake focal mechanisms since 1936 were analyzed to understand the characteristic of focal mechanism and regional stress orientation and tectonics. These earthquakes are largest ones from the last century and may represent the characteristics of earthquake in this region. Focal mechanism of these earthquakes show predominant strike-slip faulting with small amount of thrust components. The average P-axis is almost horizontal ENE-WSW direction. This mechanism pattern and the direction of maximum stress axis is very similar with northeastern part of China and southwestern part of Japan. However they are quite different with the eastern part of East Sea. This indicate that not only the subducting Pacific Plate from east but also the indenting Indian Plate controls focal mechanism in the far east of the Eurasian Plate.

Application of Moment Tensor Inversion to Small Local Earthquakes in the Korean Peninsula (한반도의 소규모지진 모멘트 텐서 역산의 응용)

  • Kim, So-Gu;Van, Phan Thi Kim;Lee, Seoung-Kyu
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.1 no.3 s.3
    • /
    • pp.123-136
    • /
    • 2001
  • The purpose of application of moment tensor inversion method is to determine source parameters, such as, focal mechanism, seismic moment and source depth. This paper presents results of focal mechanism solutions of 14 recent events with magnitudes ranging from M3.3 to M4.8 by using moment tensor inversion method called TDMT_INV. The strike of faults is in the direction of NE-SW and NW-SE with the movement of strike-slip or strike-slip of minor reverse component. The compressional axis of the stress field is predominantly E-W or ENE-WSW except for some faults, which are distributed at Ryongnam Massif and Wonsan, they have a compressional axis of N-S or NNW-SSE.

  • PDF

Fault plane solutions of the December 13, 1996 Yeongweol earthquake (1996년 12월 13일 영월지진의 진원단층면 방향)

  • Park, Chang Eop;Sin, Jin Su;Ji, Heon Cheol;Gang, Ik Beom;Ryu, Yong Gyu
    • Journal of the Korean Geophysical Society
    • /
    • v.1 no.1
    • /
    • pp.23-30
    • /
    • 1998
  • Fault-plane solutions of the December 13, 1996 Yeongweol earthquake with magnitude 4.5 is obtained using the grid test technique. Thirty polarities of P waves recorded at KMA, KIGAM, KSRS and JAPAN stations are used for the event. The obtained fault plane solution shows strike-slip motion with significant amount of thrust component. The orientation of the fault is 180±20° in strike, 50±5° in dip and 150±5° in rake, or 292±3° in strike, 65±5° in dip and 30±10° in rake. These solutions are similar to those of earthquakes occurred at Sagju (Jan. 7, 1980), Pohang (Apr. 15, 1981) and offshore Gunsan (Oct. 6, 1976). The compressional axis of the stress field is trending from ENE to WSW, which is consistent with the previously defined typical regional tectonic stress orientation in and around Korean Peninsula.

  • PDF

Geological Structural Lines and Hamdeok-Pyoseon Graben in Jeju Island (제주도의 지질구조선과 함덕-표선 지구대)

  • Booh Seong-An;Jeong Gyo-Cheol;Kim Hye-Bin;Kim Kyeong-Su;Woo Myoung-Ha;Lee Byoung-Ho
    • The Journal of Engineering Geology
    • /
    • v.15 no.4 s.42
    • /
    • pp.475-486
    • /
    • 2005
  • According to the inference results of formation process of the tectonic lineament, totally four events of subsidence including two events after upheaval of granite body and two events after sedimentation of unconsolidated sedimentary layer formed the macroscopic tensional lineament. The subsidence was occurred by tensional stress oriented ENE-WSW direction and compressional stress oriented NNW-SSE direction. The deeper distribution of tuff and unconsolidated sedimentary layer as much as 70-140m and that of granite as much as 50-500m at Hamdeok and Shinheung than those of the eastern and the western area around Hamdeok and Shinheong is due to the Hamdeok-Pyoseon Graben by three events of differential subsidence from Hamdeok to Pyoseon including Shinheung.

Side-scan sonar survey in the Pechora Sea, Russian Arctic (북극 페초라해의 Side-scan Sonar 해저면 음향영상)

  • Jin, Young-Keun;Chung, Kyung-Ho;Kim, Yea-Dong;Lee, Joo-Han
    • Journal of the Korean Geophysical Society
    • /
    • v.8 no.4
    • /
    • pp.187-194
    • /
    • 2005
  • As a study of Arctic marine survey project, Side-scan sonar survey was carried out in the Pechora Sea belonging to the southeaster part of Barents Sea. The study area is a shallow sea 11 m-16 m deep with recent sediments of rich organic carbon. Side-scan sonar profiles show large-scale marine plant communities 2-3 m wide covering the southeastern area. A lot of lineaments are traced on the seafloor in the central and northern area. The major trends of the lineaments are 220°and 290°(WSW-ENE and WNW-ESE). This trends is thought to be a main path of icebergs. Pockmarks on the seafloor are locally distributed in the area, which are formed by fluid and/or gas discharge. These would be related with petroleum/gas system well developed around the study area. Dut to weak appearances and limited distribution of the pockmarks, more detailed studies are necessary to examine their nature and structure.

  • PDF