• Title/Summary/Keyword: woven matrix

Search Result 70, Processing Time 0.023 seconds

AN IMMUNOHISTOCHEMICAL STUDY ON CALCIFYING TISSUES OF THE FLORID CEMENTO-OSSEOUS DYSPLASIA EASILY INVOLVING CHRONIC DIFFUSE SCLEROSING OSTEOMYELITIS (만성 미만성 경화성 골수염을 동반한 개화성 백악질-골 이형성증의 면역조직화학적 연구)

  • Kim, Ji-Hyuck;Jo, Joung-Ae;Kim, Soung-Min;Park, Young-Wook;Huh, Jin-Young;Lee, Suk-Keun
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.29 no.5
    • /
    • pp.293-297
    • /
    • 2003
  • Florid cemento-osseous dysplasia (FCOD) is a benign, non-neoplastic lesion characterized by multiple sclerosing masses only within jawbones. It is frequently confused with chronic diffuse sclerosing osteomyelitis (CDSO) in previous literatures. In our study, two cases of FCOD were examined to know the characteristics of their calcifying tissues. The first case was non-infected, while the second case was severely infected, displaying the typical features of CDSO in clinico-radiologic findings. The infected FCOD case showed a lot of bacterial colonies in the main lesion with relatively rare inflammatory reaction. The globular cementum-like materials of FCOD showed woven bone pattern and was positive for Alcian blue stain, and also positive for the antibodies of ameloblastin, bone morphogenetic protein (BMP) -2 and -4. On the other hands, in the immunostains of matrix metalloproteinase (MMP) -3, -9, -10, and $TNF-{\alpha}$, macrophage infiltrated in the FCOD lesion was rarely observed. These data suggest that the cementum-like materials of FCOD contain various matrix proteins, and that the cementum-like materials are relevant to the overgrowth of the bacterial colonies by inhibition of the regional inflammatory reactions.

Electron Microscopic Study of Osseointegration between Bone and Smooth Machined Implants (선반가공 임플란트와 골조직의 유착에 관한 전자현미경적 연구)

  • Chang, Byung-Soo
    • Applied Microscopy
    • /
    • v.34 no.4
    • /
    • pp.277-283
    • /
    • 2004
  • This paper reports that the ultrastructural nature of the interface process between the implants and surrounding bone has been studied after in vivo 1, 4, 8, 12 weeks of implantation of smooth machined implants into rabbit tibias. There was no indication of the fibrous connective tissue formation around the implant that imply intolerance of the bone tissue towards the implant after 1 week of implantation. The regions showing direct bone tissue bonding to the smooth machined implant contained osteoblast activating across the interface in the direction after 4 weeks of implantation. The reaction of a smooth machined implant caused in the first instance formation of an amorphous woven bone, which transformed into a mineralized bone containing collagen fibers. After 8 weeks of implantation, the activities of osteoblast initiated osseointegration forming bone matrix at the interface. During this period, the osteoblast surrounded with a matrix consisting of collagen bundles running in various directions. In the interface area between newly formed bone tissue and implants which has been inserted in rabbit tibias for 12 weeks, the implant and mineralized bone was separated by an amorphous electron dense material layer about $1{\sim}1.5{\mu}m$ in thickness.

Flexural behavior of carbon nanotube-modified epoxy/basalt composites

  • Kim, Man-Tae;Rhee, Kyong-Yop
    • Carbon letters
    • /
    • v.12 no.3
    • /
    • pp.177-179
    • /
    • 2011
  • The use of carbon nanotubes (CNTs) as a reinforcing material in a polymer matrix has increased in various industries. In this study, the flexural behavior of CNT-modified epoxy/basalt (CNT/epoxy/basalt) composites is investigated. The effects of CNT modification with silane on the flexural properties of CNT/epoxy/basalt composites were also examined. Flexural tests were performed using epoxy/basalt, oxidized CNT/epoxy/basalt, and silanized CNT/epoxy/basalt multi-scale composites. After the flexural tests, the fracture surfaces of the specimens were examined via scanning electron microscopy (SEM) to investigate the fracture mechanisms of the CNT/epoxy/basalt multi-scale composites with respect to the CNT modification process. The flexural properties of the epoxy/basalt composites were improved by the addition of CNTs. The flexural modulus and strength of the silane-treated CNT/epoxy/basalt multi-scale composites increased by approximately 54% and 34%, respectively, compared to those of epoxy/basalt composites. A SEM examination of the fracture surfaces revealed that the improvement in the flexural properties of the silane-treated CNT/epoxy/basalt multi-scale composites could be attributed to the improved dispersion of the CNTs in the epoxy.

Thermal Conductivity and Thermal Expansion Behavior of Pseudo-Unidirectional and 2-Directional Quasi-Carbon Fiber/Phenolic Composites

  • Cho, Donghwan;Choi, Yusong;Park, Jong Kyoo;Lee, Jinyong;Yoon, Byung Il;Lim, Yun Soo
    • Fibers and Polymers
    • /
    • v.5 no.1
    • /
    • pp.31-38
    • /
    • 2004
  • In the present paper, a variety of fiber reinforcements, for instance, stabilized OXI-PAN fibers, quasi-carbon fibers, commercial carbon fibers, and their woven fabric forms, have been utilized to fabricate pseudo-unidirectional (pseudo-UD) and 2-directional (2D) phenolic matrix composites using a compression molding method. Prior to fabricating quasi-carbon fiber/phenolic (QC/P) composites, stabilized OXI-PAN fibers and fabrics were heat-treated under low temperature carbonization processes to prepare quasi-carbon fibers and fabrics. The thermal conductivity and thermal expansion/contraction behavior of QC/P composites have been investigated and compared with those of carbon fiber/phenolic (C/P) and stabilized fiber/phenolic composites. Also, the chemical compositions of the fibers used have been characterized. The results suggest that use of proper quasi-carbonization process may control effectively not only the chemical compositions of resulting quasi-carbon fibers but also the thermal conductivity and thermal expansion behavior of quasi-carbon fibers/phenolic composites in the intermediate range between stabilized PAN fiber- and carbon fiber-reinforced phenolic composites.

Impact Property of S-2 Glass Woven Composites with Different Matrices and Stitching (S-2 유리섬유 평직복합재의 기지재료 및 스티칭에 따른 충격 특성 비교)

  • Byeon, Jun-Hyeong;Hwang, Byeong-Seon;Eom, Mun-Gwang;Lee, Jeong-Hun;Nam, Won-Sang;Song, Seung-Uk;Lee, Chang-Hun
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.31-34
    • /
    • 2005
  • For the damage tolerance improvement of conventional laminated composites, stitching process has been utilized for providing through-thickness reinforcements. 2D prefonl1S were stacked with S-2 glass plain weave, and 3D preforms were fabricated using the stitching process. For the matrix system, epoxy and phenol resins were considered. To examine the damage resistance performance the low velocity drop weight impact test has been carried out, and the impact damage was examined by scanning image. CAI (Compressive After Ih1paet) tests were also conducted to evaluate residual compressive strength. Compared with 2D epoxy composites, 2D phenol composites showed drastic reduction in the compressive strength prior to impact because of the higher contents of voids. The damage area of 2D phenol composites were also larger than that of 2D epoxy composites. However, by introducing the stitching, the damage area of 3D phenol composites was reduced by 60%, while the CAI strength improvement was negligible.

  • PDF

Effects of Manufacturing Technology on the Mechanical Properties of Alfa Fiber Non-woven Reinforced PMMA Composites

  • Wanassi, Bechir;Jaouadi, Mounir;Hassan, Mohamed Ben;Msahli, Slah
    • Composites Research
    • /
    • v.28 no.3
    • /
    • pp.112-117
    • /
    • 2015
  • Mechanical properties of nonwoven alfa fiber based reinforced biocomposite were evaluated to assess the possibility of using it as a new material in engineering applications such as orthopedic application. Samples were fabricated by needle punching, thermal bonding and Hydroentanglement, by blending alfa fibers with wool fibers or Polypropylene fibers. The mechanical properties were tested and showed that the nonwoven NW3 (alfa fiber/PP/PLA, with hydroentanglement) is the best. It has a value of stress at break of 1.94 MPa, a strain of 54.2% and a young's module of 7.95 MPa, in a production normal direction. A biocomposite has been made with NW3 mixed with PMMA matrix. The use of nonwoven based alfa fiber in reinforcing the composite material increases its rigidity and the tensile strength; the elongation was found to be 1.53%, the Young's Module of 1.79 GPa and the tensile at break of 15.06 MPa. Results indicated that alfa fibres are of interest for low-cost engineering applications and can compete with glass fibres in orthopedic application.

Nondestructive Evaluation of Microstructure of SiCf/SiC Composites by X-Ray Computed Microtomography

  • Kim, Weon-Ju;Kim, Daejong;Jung, Choong Hwan;Park, Ji Yeon;Snead, Lance L.
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.378-383
    • /
    • 2013
  • Continuous fiber-reinforced ceramic matrix composites (CFCCs) have a complex distribution of porosity, consisting of interfiber micro pores and interbundle/interply macro pores. Owing to the complex geometry of the pores and fiber architecture, it is difficult to obtain representative microstructural features throughout the specimen volume with conventional, destructive ceramographic approaches. In this study, we introduce X-ray computed microtomography (X-ray ${\mu}CT$) to nondestructively analyze the microstructures of disk shaped and tubular $SiC_f$/SiC composites fabricated by the chemical vapor infiltration (CVI) method. The disk specimen made by stacking plain-woven SiC fabrics exhibited periodic, large fluctuation of porosity in the stacking direction but much less variation of porosity perpendicular to the fabric planes. The X-ray ${\mu}CT$ evaluation of the microstructure was also effectively utilized to improve the fabrication process of the triple-layered tubular SiC composite.

Experimental Investigations of Mode I Fracture Toughness of a Hybrid Twill Woven Carbon and Aramid Fabric Composite (하이브리드 능직 탄소-아라미드 섬유 복합재의 모드 I 파괴인성에 대한 실험적 연구)

  • Kwon, Woo Deok;Kwon, Oh Heon
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.6
    • /
    • pp.1-6
    • /
    • 2019
  • Carbon fiber has excellent specific strength, corrosion resistance and heat resistance. And p-Aramid fiber has high toughness and heat resistance and high elasticity, and is used in various fields such as industrial protective materials, bulletproof helmets and vests, as well as industrial fields. However, carbon fiber is relatively expensive, and is susceptible to brittle fracture behavior due to its low fracture strain. On the other hand, the aramid fiber tends to decrease in elastic modulus and strength when applied to the epoxy matrix, but it is inexpensive and has higher elongation and fracture toughness than carbon fiber. Thus the twill hybrid carbonaramid fiber reinforced composite laminate composite was investigated for a delamination fracture toughness under Mode I loading by 2 kinds of MBT and MCC deduction. The specimen was fabricated with 20 hybrid fabric plies. The initial crack was made by inserting the teflon tape in the center plane with a0/W=0.5 length. The results show that SERR(Strain Energy Release Rate) as the critical and stable delamination fracture toughness were 0.09 kJ/㎡, 0.386 kJ/㎡ by MBT deduction, and 0.192 kJ/㎡, 0.67 kJ/㎡ by MCC deduction, respectively.

AN EXPERIMENTAL STUDY OF $GUIDOR^{(R)}$ BARRIER MEMBRANE ABOUT BONE PROMOTION AROUND DENTAL IMPLANTS PLACED INTO EXTRACTION SOCKET IN DOGS (성견의 Implant 주위에 $GUIDOR^{(R)}$ BARRIER MEMBRANE 사용후 골신생에 관한 실험적 연구)

  • Yang, Myeong-Cheol;Jin, Woo-Jeong;Shin, Hyo-Keun;Kim, Oh-Hwan
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.18 no.1
    • /
    • pp.135-143
    • /
    • 1996
  • The aim of this study was to evaluate bone promotion of bioreabsorbable guided tissue regeneration for generating new bone adjacent to osseointegrated implants in dogs. Third premolars were extracted in dgo mandibles. Cylindrical HA-coated implants were placed into extracted sockets in dogs. And test sites were protected by $GUIDOR^{(R)}$ matrix barrier. But control sites were not protected by membrances. The sites were examined clinically, radiologically, and histologically after 1, 2, and 4 months to assess bone regeneration. The results obtained were as foolows : 1. There were the good healing and the stability of $GUIDOR^{(R)}$ matrix barrier in experimental site during the healing period. 2. Complete resorption of $GUIDOR^{(R)}$ matrix barrier was clinically observed about 4 months postoperatively. 3. The woven bone changed to mature bone with a normal cortical plate and mature, resting periosteum after 4 months. 4. In experimental site, there was a significantly greater bone promtion than observed in control site. 5. $GUIDOR^{(R)}$ matrix barrier was useful for the preparation of immediate dental implants.

  • PDF

Fatigue Damage Evaluation of Woven Carbon-Fiber-Reinforced Composite Materials by Using Fatigue Damage Model (피로 손상 모델을 이용한 직조 탄소섬유강화 복합재료의 피로 손상 평가)

  • Park, Hong-Sun;Choi, Jung-Hun;Koo, Jae-Mean;Seok, Chang-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.6
    • /
    • pp.757-762
    • /
    • 2010
  • Owing to the high specific strength and stiffness of composite materials, they are extensively used in mechanical systems and in vehicle industries. However, most mechanical structures experience repeated load and fatigue. Therefore, it is important to perform fatigue analysis of fiber-reinforced composites. The properties of composite laminates vary depending upon the stacking sequence and stacking direction. Fatigue damage of composite laminates occurs according to the following sequence: matrix cracking, delamination, and fiber breakage. In this study, fatigue tests were performed for damage analysis. Fatigue damages, which have to be considered in fatigue analysis, are determined by using the stiffness values calculated from hysteresis loops, and the obtained fatigue damage curve is examined using Mao's equation and Abdelal's equation.