• Title/Summary/Keyword: woven fiber glass

Search Result 63, Processing Time 0.028 seconds

Recycling of Sound Insulation Headliner Waste Material (흡음재 폐기물의 재활용 방안)

  • Hong, Young-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.6
    • /
    • pp.3089-3095
    • /
    • 2013
  • The headliner was made of polyurethane(PU) and glass fiber(GF) composite materials are widely used as a sound insulation material. A large amount of waste materials occurs as a by-product in the headliner manufacturing process. In order to efficiently reuse the headliner waste materials, separation process of the components are very necessary. According to the results of thermal analysis, weight loss showed increase in the order polyurethane foam> non-foaming polyurethane> non-woven fabric> 1st layer> glass fiber in the range of up to $400^{\circ}C$. Analysis of the DSC characteristics, HDPE, LLDPE, PP, and Master Batch by adding additives the wasted scrap. As a result, except for the PP, there was no exothermic transition due to the crystallization.

Behavior of Woven-glass/Epoxy Composites after Impact Loading (접촉하중형태에 따른 복합재의 거동변화)

  • 이재준;김병식;황성식;김태우;김찬묵
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.53-56
    • /
    • 2002
  • External low-velocity impact loadings onto the composites cause reduction of stiffness and/or strength. The reductions indicate that internal(external) damages were developed within the composites. These damages could be matrix cracking, fiber/matrix debonding, or delamination between layers. In previous studies, damage evaluation have been done by applying secondary mechanical loading such as buckle-driven compressive, or fatigue, or flexural loadings. An evaluation method by applying indentation loadings on the composites was proposed. The load-displacement curves obtained from the indentation testing provided the extent of damages within the composites due to impact loadings.

  • PDF

Behaviour of GFRP composite plate under ballistic impact: experimental and FE analyses

  • Ansari, Md. Muslim;Chakrabarti, Anupam
    • Structural Engineering and Mechanics
    • /
    • v.60 no.5
    • /
    • pp.829-849
    • /
    • 2016
  • In this paper, experimental as well as numerical analysis of Glass Fiber Reinforced Polymer (GFRP) laminated composite has been presented under ballistic impact with varying projectile nose shapes (conical, ogival and spherical) and incidence velocities. The experimental impact tests on GFRP composite plate reinforced with woven glass fiber ($0^{\circ}/90^{\circ}$)s are performed by using pneumatic gun. A three dimensional finite element model is developed in AUTODYN hydro code to validate the experimental results and to study the ballistic perforation characteristic of the target with different parametric variations. The influence of projectile nose shapes, plate thickness and incidence velocity on the variation of residual velocity, ballistic limit, contact force-time histories, energy absorption, damage pattern and damage area in the composite target have been studied. The material characterization of GFRP composite is carried out as required for the progressive damage analysis of composite. The numerical results from the present FE model in terms of residual velocity, absorbed energy, damage pattern and damage area are having close agreement with the results from the experimental impact tests.

Flame Resistance Performance of Architectural Membrane According to Woven Fabrics and Coating Materials (직포 및 코팅재 타입에 따른 건축용 막재의 난연성능)

  • Kim, Ji Hyeon;Song, Hun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.6
    • /
    • pp.545-551
    • /
    • 2016
  • Membrane structures which can be used large spatial structure are being expanded because of various advantages. However, despite the diverse membrane structure buildings and materials, the standard for membrane material performance that considering fire safety is still inadequate. Therefore, this study applied basalt or glass woven fabric with flame resistance on architectural membrane, and report the fire safety for architectural membrane using the strength properties, flammability and incombustibility. From the test result, the architectural membrane using basalt or glass woven fabric showed a low heat release rate and total heat release. Therefore, it was confirmed that the fire safety is relatively high.

Effect of Surface Properties on Adhesive Strength of Joint of Glass Fiber/Polyester Composite Panels (유리섬유/폴리에스테르 복합재료 패널 접합부의 접착강도에 관한 표면성질의 효과)

  • Nhut, Pham Thanh;Yum, Young Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.12
    • /
    • pp.1591-1597
    • /
    • 2012
  • Adherend samples were made from unsaturated polyester and woven and mat glass fibers by the hand layup and vacuum methods. The mechanical properties of the adhesive, composite adherends, and terminal-joint and secondary-joint specimens were determined experimentally. Combinations of the experiment results and the bonding theory were used in this study. The maximum and average shear stresses were calculated based on the maximum tensile force and geometry parameters of the joint specimens. The results of the maximum and average shear stresses were compared and evaluated for six joints. The results showed that the grinding and grind/acetone joint had the highest strength among three types of terminal-joints. Similarly, the mat-mat and mat-woven joints had the highest strength among three types of secondary-joints with the same value. Conversely, no treatment and woven-woven bonding had very low strength. In each case, failure occurred always at two ends and then moved toward the middle area of the overlap length.

The Effects of the Initial Crack Length and Fiber Orientation on the Interlaminar Delamination of the CFRP/GFRP Hybrid Laminate (초기 균열길이 및 섬유방향이 CFRP/GFRP 하이브리드 적층재의 층간 파괴에 미치는 영향)

  • Kwon, Oh-Heon;Kwon, Woo-Deok;Kang, Ji-Woong
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.1
    • /
    • pp.12-17
    • /
    • 2013
  • Considering the wind power system and the rotor blades which are composed of much technology, the wind power blade would be the most dangerous part because it revolves at high speed and weighs about dozens of tons, if the accident happens. Therefore, the light weight composite materials have been replacing as substitutional materials. The object of this study is to examine the delamination and damage for CFRP/GFRP hybrid composite that is used for strength improvement of a wind power blade. The influence of the initial crack length and fiber orientation for the interlaminar delamination was exposed for the blade safety. Plain woven CFRP instead of GFRP was inserted into the layer of the box spar for improving the strength and blade life. DCB(Double Cantilever Beam) specimen was used for evaluating fracture toughness and damage evaluation of interlaminar delamination. The material used in the experiment is a commercial material known as CF 3327 EPC in plain woven carbon prepreg(Hankuk Carbon Co.) and UD glass fiber prepreg(Hyundai Fiber Co.). From the results, crack growth rate is not so different according to the variation of the initial crack length. Mode I interlamainar fracture toughness of fiber direction $0^{\circ}$ is higher than that of $45^{\circ}$. Interlaminar fracture has an effect on fiber direction and K decreased with lower value according to increasing initial crack length. Also energy release rate fracture toughness was evaluated because CFRP/GFRP hybrid composite with a different thickness is under the mixed mode loading condition. The interlaminar fracture was almost governed by mode I fracture even though the mixed mode.

The Effect of Hole Size on the Failure Strength and Fracture Toughness in Polymer Matrix Composite Plates (Plastic기 복합재료의 파손강도 및 파괴인성에 미치는 원공크기의 영향)

  • Kim, Jeong-Gyu;Kim, Do-Sik
    • Korean Journal of Materials Research
    • /
    • v.3 no.2
    • /
    • pp.197-204
    • /
    • 1993
  • Abstract The effects of the hole size and the specimen width on the fracture behavior of several fabric composite plates are experimentally investigated in tension. Tests are performed on plain woven glass/ epoxy, plain woven carbon/epoxy and satin woven glass/polyester specimens with a circular hole. It is shown in this paper that the characteristic length according to the point stress criterion depends on the hole size and the specimen width. An excellent agreement is found between the experimental results and the analytical predictions of the modified failure criterion. The notched strength increase with an increase in the damage ratio, which is explained by a stress relaxation due to the formation of damage zone. When the unstable fracture occurred, the critical crack length equivalent for the damage zone is about twice the characteristic length. The critical energy release rate $G_c$ is independent of hole size for the same specimen width. The variation of $G_c$ according to the material system, fiber volume fraction and specimen width relates to the notch sensitivity factor. $G_c$ increases with a decrease in the notch sensitivity factor, which can be explained by a stress relaxation due to the increase of damage zone.

  • PDF

Laminate Weight Optimization of Composite Ship Structures based on Experimental Data (FRP 기계적 물성을 고려한 복합소재 선체구조 적층판 경량화 설계)

  • Oh, Daekyun;Han, Zhiqiang;Noh, Jackyou;Jeong, Sookhyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.2
    • /
    • pp.104-113
    • /
    • 2020
  • The study aims to improve the previous theory-based algorithm on the lightweight design of laminate structures of a composite ship based on the mechanical properties of fiber, resin, and laminates obtained from experiments. From a case study on using a hydrometer to measure the specific gravity of e-glass fiber woven roving fabric/polyester resin used as the raw material for the hull of a 52 ft composite ship, the equation for calculating the weight of laminate was redefined, and the relationship between decreasing mechanical properties and increasing glass content was determined from the results of material testing according to ASTM D5083 and ASTM D790. After applying these experimental data to the existing algorithm and improving it, a possible laminate design that maximizes the specific strength of the composite material was confirmed. In a case study that applied the existing algorithm based on rules, the optimal lightweight design of composite structures was achieved when the weight fraction of e-glass fiber was increased by 57.5% compared with that in the original design, but the improved algorithm allowed for an increase of only 17.5%.

Health Monitoring of Composite Plates (복합재료 평판의 헬스 모니터링)

  • Kim Dang-Won;Chun Heoung-Jae;Yi Choong-Hee;Byun Joon-Hyung;Um Moon-Kwang
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.15-20
    • /
    • 2006
  • Real time health monitoring system was studied to detect the . generation of defects in the composite structures during service life. The PZT sensors were embedded into the woven-glass/phenol composite plate during the fabrication. VARTM (Vacuum Assisted Resin Transfer Molding) process were used to fabricate the composite plate. A Teflon tape was embedded between glass fiber layers to mimic delamination induced during service. Normalized maximum amplitude and energy analyses were used for the acquired signals. Both amplitude and energy of acquired signals were extremely sensitive to the delamination. Therefore, it was successful to detect and to locate the defects in composite plate by monitoring signals from sensors and using the proposed method.

  • PDF

Conservation of the Ancient Greek Bronze Helmet donated by Sohn Keechung (손기정 기증 고대 그리스 청동제투구의 보존처리)

  • Park, Haksoo;Jeong, Subin
    • Conservation Science in Museum
    • /
    • v.14
    • /
    • pp.69-79
    • /
    • 2013
  • The area of conservation treatment of the bronze helmet of the ancient Greece, treasure No. 904, which Sohn Keechung (1912 to 2002) received as an extra prize for his winning the marathon in the 1936 Berlin Olympics deteriorated and as a result crack and discoloration occurred. Its nose guard hung downward due to the crack of the bonded area of upper end. Therefore, conservation treatment of the helmet was conducted again. The nose guard was separated from the body. Stabilization and consolidation treatment of them was made and then they were joined again. The cracked and missing areas were reinforced with woven glass fibers, and the nose guard was reinforced with woven glass fibers and Ti plate after the bonding. The joined area of the nose guard was carved with the same pattern as that of the surrounding area and its color was adjusted to be the same as well.