• 제목/요약/키워드: woven carbon fiber

검색결과 83건 처리시간 0.029초

Fiber network with superhydrophilic Si-DLC coating

  • 김성진;문명운;이광렬;김호영
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.363-363
    • /
    • 2010
  • The high capillarity of a plastic fiber network having superhydrophilic Si-DLC coating is studied. Although the superhydrophilic surface maximize wetting ability on the flat surface, there remains a requirement for the more wettable surface for various applications such as air-filters or liquid-filters. In this research, the PET non-woven fabric surface was realized by superhydrophilic coating. PTE non-woven fabric network was chosen due to its micro-pore structure, cheap price, and productivity. Superhydrophobic fiber network was prepared with a coating of oxgyen plasma treated Si-DLC films using plasma-enhanced chemical vapor deposition (PECVD). We first fabricated superhydrophilic fabric structure by using a polyethylene terephthalate (PET) non-woven fabric (NWF) coated with a nanostructured films of the Si-incorporated diamond-like carbon (Si-DLC) followed by the plasma dry etching with oxygen. The Si-DLC with oxygen plasma etching becomes a superhydrophilic and the Si-DLC coating have several advantages of easy coating procedure at room temperature, strong mechanical performance, and long-lasting property in superhydrophilicity. It was found that the superhydrophobic fiber network shows better wicking ability through micro-pores and enables water to have much faster spreading speed than merely superhydrophilic surface. Here, capillarity on superhydrophilic fabric structure is investigated from the spreading pattern of water flowing on the vertical surface in a gravitational field. As water flows on vertical flat solid surface always fall down in gravitational direction (i.e. gravity dominant flow), while water flows on vertical superhydrophilic fabric surface showed the capillary dominant spreading.

  • PDF

온도 및 수분이 탄소/아라미드 섬유 복합재의 파손거동에 미치는 영향 (The Effects of Temperature and Water Absorption on Failure Behaviors of Carbon / Aramid Fiber Composites)

  • 권우덕;권오헌;박우림
    • 한국안전학회지
    • /
    • 제37권4호
    • /
    • pp.11-19
    • /
    • 2022
  • This paper presents the effects of high temperature and water absorption on the mechanical behaviors of carbon-aramid fiber composites, specifically their strength, elastic modulus, and fracture. These composites are used in industrial structures because of their high specific strength and toughness. Carbon fiber composites are vulnerable to the impact force of external objects despite their excellent properties. Aramid fibers have high elongation and impact absorption capabilities. Accordingly, a hybrid composite with the complementary properties and capabilities of carbon and aramid fibers is fabricated. However, the exposure of aramid fiber to water or heat typically deteriorates its mechanical properties. In view of this, tensile and flexural tests were conducted on a twill woven carbon-aramid fiber hybrid composite to investigate the effects of high temperature and water absorption. Moreover, a multiscale analysis of the stress behavior of the composite's microstructure was implemented. The results show that the elastic modulus of composites subjected to high temperature and water absorption treatments decreased by approximately 22% and 34%, respectively, compared with that of the composite under normal conditions. The crack behavior of the composites was well identified under the specimen conditions.

Effects of Fiber Surface-Treatment and Sizing on the Dynamic Mechanical and Interfacial Properties of Carbon/Nylon 6 Composites

  • Cho, Dong-Hwan;Yun, Suk-Hyang;Kim, Jun-Kyung;Lim, Soon-Ho;Park, Min;Lee, Geon-Woong;Lee, Sang-Soo
    • Carbon letters
    • /
    • 제5권1호
    • /
    • pp.1-5
    • /
    • 2004
  • The effects of fiber surface-treatment and sizing on the dynamic mechanical properties of unidirectional and 2-directional carbon fiber/nylon 6 composites by means of dynamic mechanical analysis have been investigated in the present study. The interlaminar shear strengths of 2-directional carbon/nylon 6 composites sized with various thermosetting and thermoplastic resins are also measured using a short-beam shear test method. The result suggests that different surface-treatment levels onto carbon fibers may influence the storage modulus and tan ${\delta}$ behavior of carbon/nylon 6 composites, reflecting somewhat change of the stiffness and the interfacial adhesion of the composites. Dynamic mechanical analysis and short-beam shear test results indicate that appropriate use of a sizing material upon carbon fiber composite processing may contribute to enhancing the interfacial and/or interlaminar properties of woven carbon fabric/nylon 6 composites, depending on their resin characteristics and processing temperature.

  • PDF

평직 CFRP 복합재료의 섬유 배열각도별 피로 균열 성장 평가 (Evaluation of Fatigue Crack Propagation Depending on Fiber Array Direction in Woven CFRP Composites)

  • 금진화;최정훈;박홍선;구재민;석창성
    • 대한기계학회논문집A
    • /
    • 제34권6호
    • /
    • pp.717-723
    • /
    • 2010
  • 많은 연구자들이 평직 탄소섬유강화플라스틱에 대해서 연구해왔지만 피로 균열 진전에 관한 연구는 아직도 미지한 상태이다. 그리고 하중과 섬유 배열 각도에 따라 균열 진전 양상이 다름을 알 수 있다. 본 연구에서는 서로 다른 두 개의 섬유 배열각도($0^{\circ}$, $45^{\circ}$)에서 평직 탄소섬유강화플라스틱의 피로 균열 진전에 대해 연구하였다. 평직 탄소섬유강화플라스틱의 피로 균열 진전 테스를 하중비 0.1에 10Hz로 수행하였다. 그 시험 결과로써, 피로 균열 진전 속도(da/dN)와 에너지해방률(${\Delta}G$)과의 그래프를 도출하였고, 섬유 배열 각도에 따른 균열 진전 양상을 $0^{\circ}$의 경우에는 Mode I를 적용하였고, $45^{\circ}$의 경우에는 Mixed Mode를 적용하였다.

하이브리드 능직 탄소-아라미드 섬유 복합재의 모드 I 파괴인성에 대한 실험적 연구 (Experimental Investigations of Mode I Fracture Toughness of a Hybrid Twill Woven Carbon and Aramid Fabric Composite)

  • 권우덕;권오헌
    • 한국안전학회지
    • /
    • 제34권6호
    • /
    • pp.1-6
    • /
    • 2019
  • Carbon fiber has excellent specific strength, corrosion resistance and heat resistance. And p-Aramid fiber has high toughness and heat resistance and high elasticity, and is used in various fields such as industrial protective materials, bulletproof helmets and vests, as well as industrial fields. However, carbon fiber is relatively expensive, and is susceptible to brittle fracture behavior due to its low fracture strain. On the other hand, the aramid fiber tends to decrease in elastic modulus and strength when applied to the epoxy matrix, but it is inexpensive and has higher elongation and fracture toughness than carbon fiber. Thus the twill hybrid carbonaramid fiber reinforced composite laminate composite was investigated for a delamination fracture toughness under Mode I loading by 2 kinds of MBT and MCC deduction. The specimen was fabricated with 20 hybrid fabric plies. The initial crack was made by inserting the teflon tape in the center plane with a0/W=0.5 length. The results show that SERR(Strain Energy Release Rate) as the critical and stable delamination fracture toughness were 0.09 kJ/㎡, 0.386 kJ/㎡ by MBT deduction, and 0.192 kJ/㎡, 0.67 kJ/㎡ by MCC deduction, respectively.

평직 탄소섬유강화 복합재료의 파괴인성평가 (The Evaluation of Fracture Toughness for Woven Carbon Fibered Reinforced Composite Materials)

  • 박홍선;이우형;금진화;최정훈;구재민;석창성
    • 한국정밀공학회지
    • /
    • 제27권10호
    • /
    • pp.69-76
    • /
    • 2010
  • This study examined how the fracture toughness is affected according to the variation of the initial crack length and the fiber arranged angle using FEA method and experimental method. Therefore, the energy release rates were calculated and compared by J-integral method and VCCT(Virtual Crack Closure Technique). The results of fracture toughness test verified these results. At this time, the locus method was used in order to determine the energy release rate. When the results of FEA were compared with those of experiment, all of those decreased with the increase of angle between load and the fiber arranged direction. The decrease was due to reducing maximum load and stiffness, and the reason of reduction has been judged that the inplane shear stress.

풍력발전기 블레이드 적용 CFRP 복합재료의 DIC 방법에 의한 재료특성치 평가 (Evaluation of Material Properties about CFRP Composite Adapted for Wind Power Blade by using DIC Method)

  • 강지웅;권오헌;김태경;조세진
    • 동력기계공학회지
    • /
    • 제14권5호
    • /
    • pp.17-23
    • /
    • 2010
  • In recent, the capacity of a commercial wind power has reached the range of 6 MW, with large plants being built world-wide on land and offshore. The rotor blades and the nacelle are exposed to external loads. Wind power system concepts are reviewed, and loadings by wind and gravity as important factors for the mechanical performance of the materials are considered. So, the mechanical properties of fiber composite materials are discussed. Plain woven fabrics Carbon Fiber Reinforced Plastics (CFRP) are advanced materials which combine the characteristics of the light weight, high stiffness, strength and chemical stability. However, Plain woven CFRP composite have a lot of problems, especially delamination, compared with common materials. Therefore, the aim of this work is to estimate the mechanical properties using the tensile specimen and to evaluate strain using the CNF specimen on plain woven CFRP composites. For the strain, we tried to apply to plain woven CFRP using Digital Image Correlation (DIC) method and strain gauge. DIC method can evaluate a strain change so it can predict a location of fracture.

Evaluation of the Damage Mechanism in CFRP Composite Using Computer Vision

  • Kwon, Oh-Heon;Xu, Shaowen;Sutton, Michael
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제34권5호
    • /
    • pp.686-694
    • /
    • 2010
  • Continuing progress in high technology has created numerous industrial applications for new advanced composite materials. Among these materials, carbon fiber-reinforced plastic (CFRP) laminate composite is typically used for low-weight carrying structures that require high specific strength. In this study, the damage mechanism of a compact tension (CT) specimen of woven CFRP laminates is described in terms of strain and displacement changes and crack growth behavior. The digital image correlation (DIC) method (which is employed here as a computer vision technique) is analyzed. Acoustic emission (AE) characteristics are also acquired during fracture tests. The results demonstrate the usefulness of these methods in evaluating the damage mechanism for woven CFRP laminate composites. From the results, we show these methods are so useful in order to evaluate the damage mechanism for woven CFRP laminate composites.

초기 균열길이 및 섬유방향이 CFRP/GFRP 하이브리드 적층재의 층간 파괴에 미치는 영향 (The Effects of the Initial Crack Length and Fiber Orientation on the Interlaminar Delamination of the CFRP/GFRP Hybrid Laminate)

  • 권오헌;권우덕;강지웅
    • 한국안전학회지
    • /
    • 제28권1호
    • /
    • pp.12-17
    • /
    • 2013
  • Considering the wind power system and the rotor blades which are composed of much technology, the wind power blade would be the most dangerous part because it revolves at high speed and weighs about dozens of tons, if the accident happens. Therefore, the light weight composite materials have been replacing as substitutional materials. The object of this study is to examine the delamination and damage for CFRP/GFRP hybrid composite that is used for strength improvement of a wind power blade. The influence of the initial crack length and fiber orientation for the interlaminar delamination was exposed for the blade safety. Plain woven CFRP instead of GFRP was inserted into the layer of the box spar for improving the strength and blade life. DCB(Double Cantilever Beam) specimen was used for evaluating fracture toughness and damage evaluation of interlaminar delamination. The material used in the experiment is a commercial material known as CF 3327 EPC in plain woven carbon prepreg(Hankuk Carbon Co.) and UD glass fiber prepreg(Hyundai Fiber Co.). From the results, crack growth rate is not so different according to the variation of the initial crack length. Mode I interlamainar fracture toughness of fiber direction $0^{\circ}$ is higher than that of $45^{\circ}$. Interlaminar fracture has an effect on fiber direction and K decreased with lower value according to increasing initial crack length. Also energy release rate fracture toughness was evaluated because CFRP/GFRP hybrid composite with a different thickness is under the mixed mode loading condition. The interlaminar fracture was almost governed by mode I fracture even though the mixed mode.