• Title/Summary/Keyword: wound stabilization

Search Result 22, Processing Time 0.031 seconds

Regulation of Wound Healing and Fibrosis by Hypoxia and Hypoxia-Inducible Factor-1

  • Ruthenborg, Robin J.;Ban, Jae-Jun;Wazir, Anum;Takeda, Norihiko;Kim, Jung-Whan
    • Molecules and Cells
    • /
    • v.37 no.9
    • /
    • pp.637-643
    • /
    • 2014
  • Wound healing is a complex multi-step process that requires spatial and temporal orchestration of cellular and non-cellular components. Hypoxia is one of the prominent microenvironmental factors in tissue injury and wound healing. Hypoxic responses, mainly mediated by a master transcription factor of oxygen homeostasis, hypoxia-inducible factor-1 (HIF-1), have been shown to be critically involved in virtually all processes of wound healing and remodeling. Yet, mechanisms underlying hypoxic regulation of wound healing are still poorly understood. Better understanding of how the wound healing process is regulated by the hypoxic microenvironment and HIF-1 signaling pathway will provide insight into the development of a novel therapeutic strategy for impaired wound healing conditions such as diabetic wound and fibrosis. In this review, we will discuss recent studies illuminating the roles of HIF-1 in physiologic and pathologic wound repair and further, the therapeutic potentials of HIF-1 stabilization or inhibition.

Stabilization of Epidermal Growth Factor in Aqueous Solution and Ointment Base (수용액 및 연고기제중의 상피세포 성장 인자의 안정화)

  • Kim, Chong-Kook;Kim, Kyoung-Mi;Kwon, Soo-Yeon
    • Journal of Pharmaceutical Investigation
    • /
    • v.27 no.2
    • /
    • pp.139-143
    • /
    • 1997
  • Epidermal growth factor (EGF) is a mitogen which activate the proliferation of basal cells in skin, which implicate the wound healing in severe skin damage such as burn. To carry out the preclinical test for the pharmacological action of EGF, EGF in transdermal delivery system must be stable. Since EGF is a protein susceptible to proteolysis and unstable in aqueous solution, in vitro stabilization of EGF is prerequisite for the formulation. In this study, effect of additives on the stability of EGF is investigated in vitro. The stability of EGF in aqueous solution was enhanced with the various water-soluble polysaccharides such as HPMC, sorbitol, mannitol and dextrin. EGF was successfully extracted from the ointment with 5% HPMC solution, and EGF in aqueous solution and ointment was also successfully stabilized with 5% HPMC. The ointments prepared with different amount of EGF were applied on the damaged dorsal skin of rats for the determination of optimal concentration of EGF. The ointment with EGF $(10\;{\mu}g/g)$ showed good wound healing action on the damaged skin of rats.

  • PDF

Osteopromotive effect of Titanium Reinforced-ePTFE membrane (티타늄강화 차폐막의 골유도 재생 효과)

  • Lee, Jean;Kwon, Young-Hyuk;Park, Joon-Bong;Herr, Yeek;Chung, Jong-Hyuk;Kim, Chong-Kwan
    • Journal of Periodontal and Implant Science
    • /
    • v.34 no.4
    • /
    • pp.711-722
    • /
    • 2004
  • The purpose of this study is to evaluate the regenerated bone histollogically using titanium reinforced ePTFE(TR-ePTFE) membrane and to investigate cell occlusiveness, wound stabilization and tissue integration of TR-ePTFE membrane. Adult male rabbits (mean BW 2kg) and TR9W (W.L.Gore&Associate.INC,USA) were used in this study. Intramarrow penetration defects were surgically created with round carbide bur(HP long #6) on calvaria of rabbits. TR-ePTFE membrane was applied to defect. Then guided bone regeneration was carried out using TR-ePTFE membrane and resorbable suture. At 2,4,8,12 weeks after the surgery, animals were sacrificed. Nondecalcified specimens were processed for histologic analysis. The result and conclusion of this study were as follows: 1. TR-ePTFE membrane had good ability of biocompatibility and cell occlusiveness. 2. space making for guided bone regenerayion was good at TR-ePTFE membrane. 3. Tissue integration was not good at TR-ePTFE membrane. So, wound stabilization was not good. 4. At 8 weeks, 12 weeks after GBR procedure, bone formation was seen. From the above results, TR-ePTFE membrane fixed tightiy on alveolar bone might be recommended for the early bone formation.

Implementation of a Low-cost Fiber Optic Gyroscope for a Line-of-Sight Stabilization System (Line-of-Sight 안정화 시스템을 위한 저가형 광자이로스코프 구현)

  • Yoon, Yeong Gyoo;Lee, Sang-Min;Kim, Jae Hyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.2
    • /
    • pp.168-172
    • /
    • 2015
  • In general, open-loop fiber-optic gyroscopes (FOG) are less stable than closed-loop FOGs but they offer simpler implementation. The typical operation time of line-of-sight (LOS) stabilization systems is a few seconds to one hour. In this paper, a open-loop fiber optic gyroscope (FOG) for LOS applications is designed and implemented. The design goal is aimed at implementing a low cost, compact FOG with low Angle Random Walk (ARW) (< $0.03deg/\sqrt{h}$) and bias instability (< 0.25deg/h). The FOG uses an open-loop all-fiber configuration with 100M PM fiber wound on a small diameter spool. In order to get the design goal, digital signal processing techniques for signal detection, modulation control and compensation are designed and implemented in FPGA.

Technical Advances in Pectus Bar Stabilization in Chest Wall Deformity Surgery: 10-Year Trends and an Appraisal with 1,500 Patients

  • Heekyung Kim;Gongmin Rim;Hyung Joo Park
    • Journal of Chest Surgery
    • /
    • v.56 no.4
    • /
    • pp.229-237
    • /
    • 2023
  • Background: We aimed to demonstrate the advances we have achieved in pectus excavatum surgery over the last 10 years, with a particular focus on the refinement of pectus bar stabilization techniques and devices. Methods: In total, 1,526 patients who underwent minimally invasive repair of pectus excavatum surgery from 2013 to 2022 were enrolled and analyzed. We have pursued a new paradigm of crane-powered remodeling of the entire chest wall. The method of bar stabilization has changed from claw fixators to hinge plates and, finally, to bridge plate connections. We also evaluated the effectiveness of the hinge plate (group H) and the bridge plate (group B). Results: The bar displacement rates were 0.1% (n=2) for the claw fixator, 0% for the hinge plate (n=0), and 0% for the bridge plate (n=0). We stopped using the claw fixator in 2022 and the hinge plate in 2019. Since 2022, when we shifted to a multiple-bar technique for all patients, the bridge plate has replaced both the claw fixator and the hinge plate. No bar displacement occurred in either group. Group H had more pleural effusion, wound problems (p<0.05), and longer stays (5.5 vs. 6.2 days, p=0.034) than group B. Conclusion: We have made significant progress in pectus repair surgery over the last decade, particularly in stabilizing the pectus bar and reducing perioperative complications. Our current strategy is the multiple-bar approach with bridge stabilization. Since the bridge-only technique resulted in no bar displacement, we could eliminate the invasive claw fixator or hinge plate.

Correction of Atlanto-axial Instability by Avulsion Fracture of the Axis in a Dog (중쇠뼈 찢김골절로 인한 고리중쇠 관절 불안정의 교정)

  • Hwang, Yong-Hyun;Kim, Minkyung;Park, Jung-Hyun;Jin, So-Young;Park, Ki-Tae;Lee, Hee-Chun;Lee, Jae-Hoon
    • Journal of Veterinary Clinics
    • /
    • v.30 no.6
    • /
    • pp.499-502
    • /
    • 2013
  • An eight-year-old, castrated male, Poodle dog was presented with a bite wound in the neck region. Clinical examination revealed non-ambulatory signs of tetraparesis with deep pain, and upper motor neuron changes in all limbs. Fractures of the transverse process of C1 and the dorsal spinous process of C2 were observed on the radiographs and the computed tomography (CT). Conservative therapy was performed for 1 week. However the neurological problems were not alleviated until 7 days after injury. The owners agreed to perform surgical stabilization. The surgical stabilization was performed 7 days after presentation. Ventral stabilization was performed with screws, K-wires and bone cement. The dog stood up independently after 4 weeks and was able to walk 6 weeks postoperatively. In this report we suggest that using combined stabilization techniques are effective for this type of cervical fracture in which the dorsal and ventral structures of the vertebra are severely disrupted.

Clinical Outcomes of Minimally Invasive Surgical Stabilization of Rib Fractures Using Video-Assisted Thoracoscopic Surgery

  • Chae-Min Bae;Shin-Ah Son;Yong Jik Lee;Sang Cjeol Lee
    • Journal of Chest Surgery
    • /
    • v.56 no.2
    • /
    • pp.120-125
    • /
    • 2023
  • Background: Multiple rib fractures are common in blunt chest trauma. Until recently, most surgical rib fixations for multiple rib fractures were performed via open thoracotomy. However, due to the invasive nature of tissue dissection and the resulting large wound, an alternative endoscopic approach has emerged that minimizes the postoperative complications caused by the manipulation of injured tissue and lung during an open thoracotomy. Methods: Our study concentrated on patients with multiple rib fractures who underwent surgical stabilization of rib fractures (SSRF) between June 2018 and May 2020. We found 27 patients who underwent SSRF using video-assisted thoracoscopic surgery. The study design was a retrospective review of the patients' charts and surgical records. Results: No intraoperative events or procedure-related deaths occurred. Implant-related irritation occurred in 4 patients, and 1 death resulted from concomitant trauma. The average hospital stay was 30.2±20.1 days, and ventilators were used for 12 of the 22 patients admitted to the intensive care unit. None of the patients experienced major pulmonary complications such as pneumonia or acute respiratory distress syndrome. Conclusion: Minimally invasive rib stabilization surgery with the assistance of a thoracoscope is expected to become more widely used in patients with multiple rib fractures. This method will also assist patients in a quick recovery.

Analytical and Experimental studies on Dielectric Characteristics of High Voltage Superconducting Machines in Liquid Nitrogen (액체질소를 사용하는 초전도 고전압 전력기기의 절연 특성 연구)

  • Na, J.B.;Ko, T.K.;Kang, H.;Seok, B.Y.;Kim, T.J.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.13 no.1
    • /
    • pp.46-50
    • /
    • 2011
  • The electrical insulation design of high voltage superconducting fault current limiters (SFCLs) should be confirmed to be applied for the stabilization of the power grid. This paper describes numerical analysis and AC dielectric experiments for developing high voltage SFCLs. The electric field distributions between applied high voltage part and ground were calculated by finite element method (FEM) simulation tool and AC criterion of liquid nitrogen at 200 kPa was calculated from correlation between the field utilization factor and FEM simulation results. This paper deals with ceonceptual insulation design of a 154 kV class single-phase no-inductively wound solenoid type SFCL which was focused on gap distance between the cryostat and superconducting coils. Furthermore, the shield ring effect was confirmed to reduce maximum electric field at applied high voltage part.

PRODUCTION OF TRANSFORMING GROWTH FACTOR-${\beta}_1$ IN HUMAN FIBROBLASTS INDUCED WITH BACTERIAL TOXINS (세균 독소를 작용시킨 섬유아 세포에서 Transforming Growth Factor-${\beta}_1$의 생성)

  • Lee, Seong-Geun;Kim, Kwang-Hyuk
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.26 no.4
    • /
    • pp.345-354
    • /
    • 2000
  • TGF-${\beta}_1$ is a potent chemotactic factor for inflammatory cells and fibroblasts. It also stimulates the celluar source and components of extracellular matrix and the production of proteinase inhibitors. Collectively, these biologic activities lead to the accumulation and stabilization of the nascent matrix, which is vital to wound healing. The objective of this study is to investigate production of TGF-${\beta}_1$ in vitro fibroblast culture in the presence of Staphylococcus enterotoxin B(SEB) and/or lipopolysaccharide(LPS) and to elucidate the role of TGF-${\beta}_1$ which may be responsible for wound healing. The fibroblasts were originated from facial dermis and hypertrophic scar in 26 year-old male patient. In the presence of LPS($0.01{\mu}g$, $0.1{\mu}g$, $1.0{\mu}g$), SEB($0.01{\mu}g$, $0.1{\mu}g$, $1.0{\mu}g$) respectively, cells($5{\times}10^3ml$) were cultivated in vitro. At 1, 3, and 5 days after incubation, cells were counted. Also, cells($2.5{\times}10^5ml$) were cultivated in EMEM with LPS(0.01, 0.1 and $1.0{\mu}g$), SEB(0.01, 0.1 and $1.0{\mu}g$) respectively and LPS($0.1{\mu}g$) and SEB($0.1{\mu}g$) in combination for 24, 48, and 72 hours respectively. Culture supernatants were harvested at 1, 2, and 3 days after incubation period and triplicate culture supernatants were pooled and TGF-${\beta}_1$ was assayed in duplicate. The results were as follows. 1. In facial dermal fibroblast induced with SEB and LPS respectively or in combination, the suppression of cell proliferation occurred very significantly at 1 day after incubation, compared with the control. In SEB exposure, the production of TGF-${\beta}_1$ was decreased very significantly at 1 day after incubation, compared with the control. However, in LPS, SEB and LPS exposure, the production of TGF-${\beta}_1$ was increased very significantly at 1 day after incubation, compared with the control. 2. In hypertrophic scar fibroblast induced with SEB and LPS respectively or in combination, the suppression of cell proliferation did not occur at 1 day after incubation, compared with the control. In SEB and LPS exposure in combination, the production of TGF-${\beta}_1$ was increased very significantly at 1 day after incubation, compared with the control. However, the production of TGF-${\beta}_1$ did not occur in SEB and LPS exposure respectively. In conclusion, the concentration of bacterial toxins and the incubation period correlated with cell proliferation and production of TGF-${\beta}_1$ very significantly and both fibroblasts have different phenotype each other in this regard. This data suggest that the significant production of TGF-${\beta}_1$ may develope abnormal wound healing associated with tissue fibroproliferative disorder, such as hypertrophic scar and keloid formation.

  • PDF

Histologic evaluation of the regenerated bone using bone graft materials (수종의 골이식재를 이용한 유도재생골의 조직학적 평가)

  • Ryu, Ho-Chul;Park, Joon-Bong;Kwon, Young-Hyuk;Herr, Yeek;Chung, Jong-Hyuk;Jue, Seong-Suk
    • Journal of Periodontal and Implant Science
    • /
    • v.36 no.2
    • /
    • pp.289-303
    • /
    • 2006
  • This study was performed to evaluate the effect of bone graft materials including demineralized freeze-dried bone, freeze-dried bone, deproteinized bovine bone on space-making capacity and bone formation in guided bone regeneration with titanium reinforced ePTFE membrane(TR-ePTFE). Adult male rabbits(mean BW 2kg) were used in this study. Intramarrow penetration defects were surgically created with round bur on calvaria of rabbits. TR-ePTFE membrane was adapted to calvarial defect and bone graft materials were placed. Animals were sacrificed at 2, 8, 12 weeks after surgery. Non-decalcified specimens were processed for histologic analysis and prepared with Villaneuva bone stain. The results of this study were as follows: 1. TR-ePTFE membrane was biocompatible and capable of maintaining the space-making. 2. Tissue integration was not good at TR-ePTFE membrane. Fixation was not enough. so, wound stabilization was not good. 3. In animals using deproteinized bovine bone, demineralized freeze-dried bone, bone formation was little. 4. In animals using freeze-dried bone, bone formation was better. Within the above results, bone formation may be inhibited when wound stabilizafion was not good.