Browse > Article
http://dx.doi.org/10.14348/molcells.2014.0150

Regulation of Wound Healing and Fibrosis by Hypoxia and Hypoxia-Inducible Factor-1  

Ruthenborg, Robin J. (Department of Molecular and Cell Biology, The University of Texas at Dallas)
Ban, Jae-Jun (Department of Molecular and Cell Biology, The University of Texas at Dallas)
Wazir, Anum (Department of Molecular and Cell Biology, The University of Texas at Dallas)
Takeda, Norihiko (Department of Cardiovascular Medicine, University of Tokyo)
Kim, Jung-Whan (Department of Molecular and Cell Biology, The University of Texas at Dallas)
Abstract
Wound healing is a complex multi-step process that requires spatial and temporal orchestration of cellular and non-cellular components. Hypoxia is one of the prominent microenvironmental factors in tissue injury and wound healing. Hypoxic responses, mainly mediated by a master transcription factor of oxygen homeostasis, hypoxia-inducible factor-1 (HIF-1), have been shown to be critically involved in virtually all processes of wound healing and remodeling. Yet, mechanisms underlying hypoxic regulation of wound healing are still poorly understood. Better understanding of how the wound healing process is regulated by the hypoxic microenvironment and HIF-1 signaling pathway will provide insight into the development of a novel therapeutic strategy for impaired wound healing conditions such as diabetic wound and fibrosis. In this review, we will discuss recent studies illuminating the roles of HIF-1 in physiologic and pathologic wound repair and further, the therapeutic potentials of HIF-1 stabilization or inhibition.
Keywords
fibrosis; hypoxia; hypoxia-inducible factor-1; oxygen; wound healing;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Wang, G.L., and Semenza, G.L. (1993). Characterization of hypoxia-inducible factor 1 and regulation of DNA binding activity by hypoxia. J. Biol. Chem. 268, 21513-21518.
2 Wang, G.L., Jiang, B.H., Rue, E.A., and Semenza, G.L. (1995). Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc. Natl. Acad. Sci. USA 92, 5510-5514.   DOI   ScienceOn
3 Weidemann, A., and Johnson, R.S. (2008). Biology of HIF-1 alpha. Cell Death Differ. 15, 621-627.   DOI   ScienceOn
4 Yamakawa, M., Liu, L.X., Date, T., Belanger, A.J., Vincent, K.A., Akita, G.Y., Kuriyama, T., Cheng, S.H., Gregory, R.J., and Jiang, C. (2003). Hypoxia-inducible factor-1 mediates activation of cultured vascular endothelial cells by inducing multiple angiogenic factors. Circ. Res. 93, 664-673.   DOI   ScienceOn
5 Zeisberg, M., and Kalluri, R. (2013). Cellular mechanisms of tissue fibrosis. 1. Common and organ-specific mechanisms associated with tissue fibrosis. Am. J. Physiol. Cell Physiol. 304, C216-C225.   DOI   ScienceOn
6 Zhang, H., Akman, H.O., Smith, E.L., Zhao, J., Murphy-Ullrich, J.E., and Batuman, O.A. (2003). Cellular response to hypoxia involves signaling via Smad proteins. Blood 101, 2253-2260.   DOI   ScienceOn
7 Zhang, X., Yan, X., Cheng, L., Dai, J., Wang, C., Han, P., and Chai, Y. (2013). Wound healing improvement with PHD-2 silenced fibroblasts in diabetic mice. PLoS One 8, e84548.   DOI
8 Remensnyder, J.P., and Majno, G. (1968). Oxygen gradients in healing wounds. Am. J. Pathol. 52, 301-323.
9 Schafer, M., and Werner, S. (2008). Oxidative stress in normal and impaired wound repair. Pharmacol. Res. 58, 165-171.   DOI   ScienceOn
10 Semenza, G.L. (2012). Hypoxia-inducible factors in physiology and medicine. Cell 148, 399-408.   DOI   ScienceOn
11 Semenza, G.L., and Wang, G.L. (1992). A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol. Cell. Biol. 12, 5447-5454.   DOI
12 Taraboletti, G., D'Ascenzo, S., Giusti, I., Marchetti, D., Borsotti, P., Millimaggi, D., Giavazzi, R., Pavan, A., and Dolo, V. (2006). Bioavailability of VEGF in tumor-shed vesicles depends on vesicle burst induced by acidic pH. Neoplasia 8, 96-103.   DOI
13 Tzouvelekis, A., Harokopos, V., Paparountas, T., Oikonomou, N., Chatziioannou, A., Vilaras, G., Tsiambas, E., Karameris, A., Bouros, D., and Aidinis, V. (2007). Comparative expression profiling in pulmonary fibrosis suggests a role of hypoxia-inducible factor-1alpha in disease pathogenesis. Am. J. Respir. Crit. Care Med. 176, 1108-1119.   DOI   ScienceOn
14 Taylor, C.T., and McElwain, J.C. (2010). Ancient atmospheres and the evolution of oxygen sensing via the hypoxia-inducible factor in metazoans. Physiology 25, 272-279.   DOI   ScienceOn
15 Tepper, O.M., Capla, J.M., Galiano, R.D., Ceradini, D.J., Callaghan, M.J., Kleinman, M.E., and Gurtner, G.C. (2005). Adult vasculogenesis occurs through in situ recruitment, proliferation, and tubulization of circulating bone marrow-derived cells. Blood 105, 1068-1077.
16 Tuder, R.M., Lara, A.R., and Thannickal, V.J. (2012). Lactate, a novel trigger of transforming growth factor-beta activation in idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 186, 701-703.   DOI   ScienceOn
17 Loomis-King, H., Flaherty, K.R., and Moore, B.B. (2013). Pathogenesis, current treatments and future directions for idiopathic pulmonary fibrosis. Curr. Opin. Pharmacol. 13, 377-385.   DOI   ScienceOn
18 Maher, T.M. (2012). Idiopathic pulmonary fibrosis: pathobiology of novel approaches to treatment. Clin. Chest Med. 33, 69-83.   DOI   ScienceOn
19 Maxwell, P.H., Wiesener, M.S., Chang, G.W., Clifford, S.C., Vaux, E.C., Cockman, M.E., Wykoff, C.C., Pugh, C.W., Maher, E.R., and Ratcliffe, P.J. (1999). The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399, 271-275.   DOI   ScienceOn
20 Moulik, P.K., Mtonga, R., and Gill, G.V. (2003). Amputation and mortality in new-onset diabetic foot ulcers stratified by etiology. Diabetes Care 26, 491-494.   DOI   ScienceOn
21 Myllyharju, J. (2009). HIF prolyl 4-hydroxylases and their potential as drug targets. Curr. Pharm. Des. 15, 3878-3885.   DOI   ScienceOn
22 Myllyharju, J. (2013). Prolyl 4-hydroxylases, master regulators of the hypoxia response. Acta Physiol. 208, 148-165.   DOI   ScienceOn
23 Noble, P.W., Barkauskas, C.E., and Jiang, D.H. (2012). Pulmonary fibrosis: patterns and Perpetrators. J. Clin. Invest. 122, 2756-2762.   DOI   ScienceOn
24 Ohh, M., Park, C.W., Ivan, M., Hoffman, M.A., Kim, T.Y., Huang, L.E., Pavletich, N., Chau, V., and Kaelin, W.G. (2000). Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel-Lindau protein. Nat. Cell Biol. 2, 423-427.   DOI   ScienceOn
25 Pichiule, P., Chavez, J.C., and LaManna, J.C. (2004). Hypoxic regulation of angiopoietin-2 expression in endothelial cells. J. Biol. Chem. 279, 12171-12180.   DOI   ScienceOn
26 Kaminski, N., and Rosas, I.O. (2006). Gene expression profiling as a window into idiopathic pulmonary fibrosis pathogenesis: can we identify the right target genes? Proc. Am. Thorac. Soc. 3, 339-344.
27 Kim, J.W., Tchernyshyov, I., Semenza, G.L., and Dang, C.V. (2006). HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metabol. 3, 177-185.   DOI   ScienceOn
28 Kottmann, R.M., Kulkarni, A.A., Smolnycki, K.A., Lyda, E., Dahanayake, T., Salibi, R., Honnons, S., Jones, C., Isern, N.G., Hu, J.Z., et al. (2012). Lactic acid is elevated in idiopathic pulmonary fibrosis and induces myofibroblast differentiation via pHdependent activation of transforming growth factor-beta. Am. J. Respir. Crit. Care Med. 186, 740-751.   DOI   ScienceOn
29 Kimura, K., Iwano, M., Higgins, D.F., Yamaguchi, Y., Nakatani, K., Harada, K., Kubo, A., Akai, Y., Rankin, E.B., Neilson, E.G., et al. (2008). Stable expression of HIF-1alpha in tubular epithelial cells promotes interstitial fibrosis. Am. J. Physiol. Renal Physiol. 295, F1023-1029.   DOI   ScienceOn
30 Koch, L.G., and Britton, S.L. (2008). Aerobic metabolism underlies complexity and capacity. J. Physiol. 586, 83-95.   DOI   ScienceOn
31 Labrecque, M.P., Prefontaine, G.G., and Beischlag, T.V. (2013). The aryl hydrocarbon receptor nuclear translocator (ARNT) family of proteins: transcriptional modifiers with multi-functional protein interfaces. Curr. Mol. Med. 13, 1047-1065.   DOI
32 Li, J., Chen, J., and Kirsner, R. (2007). Pathophysiology of acute wound healing. Clin. Dermatol. 25, 9-18.   DOI   ScienceOn
33 Lokmic, Z., Musyoka, J., Hewitson, T.D., and Darby, I.A. (2012). Hypoxia and hypoxia signaling in tissue repair and fibrosis. Int. Rev. Cell Mol. Biol. 296, 139-185.   DOI   ScienceOn
34 Forsythe, J.A., Jiang, B.H., Iyer, N.V., Agani, F., Leung, S.W., Koos, R.D., and Semenza, G.L. (1996). Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol. Cell. Biol. 16, 4604-4613.
35 Hong, W.X., Hu, M.S., Esquivel, M., Liang, G.Y., Rennert, R.C., McArdle, A., Paik, K.J., Duscher, D., Gurtner, G.C., Lorenz, H.P., et al. (2014). The Role of Hypoxia-Inducible Factor in Wound Healing. Adv. Wound Care 3, 390-399.   DOI
36 Gao, W., Ferguson, G., Connell, P., Walshe, T., Murphy, R., Birney, Y.A., O'Brien, C., and Cahill, P.A. (2007). High glucose concentrations alter hypoxia-induced control of vascular smooth muscle cell growth via a HIF-1alpha-dependent pathway. J. Mol. Cell. Cardiol. 42, 609-619.   DOI   ScienceOn
37 Higgins, D.F., Kimura, K., Bernhardt, W.M., Shrimanker, N., Akai, Y., Hohenstein, B., Saito, Y., Johnson, R.S., Kretzler, M., Cohen, C.D., et al. (2007). Hypoxia promotes fibrogenesis in vivo via HIF-1 stimulation of epithelial-to-mesenchymal transition. J. Clin. Invest. 117, 3810-3820.
38 Hoffman, E.C., Reyes, H., Chu, F.F., Sander, F., Conley, L.H., Brooks, B.A., and Hankinson, O. (1991). Cloning of a factor required for activity of the Ah (dioxin) receptor. Science 252, 954-958.   DOI
39 Ivan, M., Kondo, K., Yang, H., Kim, W., Valiando, J., Ohh, M., Salic, A., Asara, J.M., Lane, W.S., and Kaelin, W.G., Jr. (2001). HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292, 464-468.   DOI   ScienceOn
40 Jaakkola, P., Mole, D.R., Tian, Y.M., Wilson, M.I., Gielbert, J., Gaskell, S.J., von Kriegsheim, A., Hebestreit, H.F., Mukherji, M., Schofield, C.J., et al. (2001). Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292, 468-472.   DOI   ScienceOn
41 Catrina, S.B., Okamoto, K., Pereira, T., Brismar, K., and Poellinger, L. (2004). Hyperglycemia regulates hypoxia-inducible factor-1alpha protein stability and function. Diabetes 53, 3226-3232.   DOI   ScienceOn
42 Berra, E., Roux, D., Richard, D.E., and Pouyssegur, J. (2001). Hypoxia-inducible factor-1 alpha (HIF-1 alpha) escapes O(2)-driven proteasomal degradation irrespective of its subcellular localization: nucleus or cytoplasm. EMBO Rep. 2, 615-620.   DOI   ScienceOn
43 Beuck, S., Schanzer, W., and Thevis, M. (2012). Hypoxia-inducible factor stabilizers and other small-molecule erythropoiesisstimulating agents in current and preventive doping analysis. Drug Test. Anal. 4, 830-845.   DOI   ScienceOn
44 Botusan, I.R., Sunkari, V.G., Savu, O., Catrina, A.I., Grunler, J., Lindberg, S., Pereira, T., Yla-Herttuala, S., Poellinger, L., Brismar, K., et al. (2008). Stabilization of HIF-1 alpha is critical to improve wound healing in diabetic mice. Proc. Natl. Acad. Sci. USA 105, 19426-19431.   DOI   ScienceOn
45 Ceradini, D.J., and Gurtner, G.C. (2005). Homing to hypoxia: HIF-1 as a mediator of progenitor cell recruitment to injured tissue. Trends Cardiovasc. Med. 15, 57-63.   DOI   ScienceOn
46 Cramer, T., Yamanishi, Y., Clausen, B.E., Forster, I., Pawlinski, R., Mackman, N., Haase, V.H., Jaenisch, R., Corr, M., Nizet, V., et al. (2003). HIF-1 alpha is essential for myeloid cell-mediated inflammation. Cell 112, 645-657.   DOI   ScienceOn
47 De Luca, M., Pellegrini, G., Zambruno, G., and Marchisio, P.C. (1994). Role of integrins in cell adhesion and polarity in normal keratinocytes and human skin pathologies. J. Dermatol. 21, 821-828.   DOI
48 Asada, N., Takase, M., Nakamura, J., Oguchi, A., Asada, M., Suzuki, N., Yamamura, K., Nagoshi, N., Shibata, S., Rao, T.N., et al. (2011). Dysfunction of fibroblasts of extrarenal origin underlies renal fibrosis and renal anemia in mice. J. Clin. Invest. 121, 3981-3990.   DOI   ScienceOn
49 Elson, D.A., Ryan, H.E., Snow, J.W., Johnson, R., and Arbeit, J.M. (2000). Coordinate up-regulation of hypoxia inducible factor (HIF)-1alpha and HIF-1 target genes during multi-stage epidermal carcinogenesis and wound healing. Cancer Res. 60, 6189-6195.
50 Andrikopoulou, E., Zhang, X., Sebastian, R., Marti, G., Liu, L., Milner, S.M., and Harmon, J.W. (2011). Current Insights into the role of HIF-1 in cutaneous wound healing. Curr. Mol. Med. 11, 218-235.   DOI   ScienceOn
51 Barriga, E.H., Maxwell, P.H., Reyes, A.E., and Mayor, R. (2013). The hypoxia factor Hif-1alpha controls neural crest chemotaxis and epithelial to mesenchymal transition. J. Cell Biol. 201, 759-776.   DOI   ScienceOn
52 Ahluwalia, A., and Tarnawski, A.S. (2012). Critical role of hypoxia sensor--HIF-1alpha in VEGF gene activation. Implications for angiogenesis and tissue injury healing. Curr. Med. Chem. 19, 90-97.   DOI
53 Basu, R.K., Hubchak, S., Hayashida, T., Runyan, C.E., Schumacker, P.T., and Schnaper, H.W. (2011). Interdependence of HIF-1alpha and TGF-beta/Smad3 signaling in normoxic and hypoxic renal epithelial cell collagen expression. Am. J. Physiol. Renal Physiol. 300, F898-905.   DOI   ScienceOn
54 Watson, C.J., Collier, P., Tea, I., Neary, R., Watson, J.A., Robinson, C., Phelan, D., Ledwidge, M.T., McDonald, K.M., McCann, A., et al. (2014). Hypoxia-induced epigenetic modifications are associated with cardiac tissue fibrosis and the development of a myofibroblast-like phenotype. Hum. Mol. Genet. 23, 2176-2188.   DOI   ScienceOn
55 Thangarajah, H., Vial, I.N., Grogan, R.H., Yao, D.C., Shi, Y.B., Januszyk, M., Galiano, R.D., Chang, E.I., Galvez, M.G., Glotzbach, J.P., et al. (2010). HIF-1 alpha dysfunction in diabetes. Cell Cycle 9, 75-79.   DOI
56 Murdoch, C., Muthana, M., and Lewis, C.E. (2005). Hypoxia regulates macrophage functions in inflammation. J. Immunol. 175, 6257-6263.   DOI
57 Kalucka, J., Ettinger, A., Franke, K., Mamlouk, S., Singh, R.P., Farhat, K., Muschter, A., Olbrich, S., Breier, G., Katschinski, D.M., et al. (2013). Loss of epithelial hypoxia-inducible factor prolyl hydroxylase 2 accelerates skin wound healing in mice. Mol. Cell. Biol. 33, 3426-3438.   DOI   ScienceOn
58 Ceradini, D.J., Kulkarni, A.R., Callaghan, M.J., Tepper, O.M., Bastidas, N., Kleinman, M.E., Capla, J.M., Galiano, R.D., Levine, J.P., and Gurtner, G.C. (2004). Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat. Med. 10, 858-864.   DOI   ScienceOn
59 Pan, X., Suzuki, N., Hirano, I., Yamazaki, S., Minegishi, N., and Yamamoto, M. (2011). Isolation and characterization of renal erythropoietin-producing cells from genetically produced anemia mice. PLoS One 6, e25839.   DOI
60 Lee, K., and Nelson, C.M. (2012). New insights into the regulation of epithelial-mesenchymal transition and tissue fibrosis. Int. Rev. Cell Mol. Biol. 294, 171-221.   DOI   ScienceOn