• Title/Summary/Keyword: wound assay

Search Result 220, Processing Time 0.029 seconds

Effects of Resveratrol on Migration and Proliferation in HT-29 Colon Cancer Cells (레스베라트롤의 HT-29 대장암 세포증식 및 이동성 억제효과)

  • Lee, Sol Hwa;Park, Song Yi;Kim, In-Seop;Park, Ock Jin;Kim, Young Min
    • KSBB Journal
    • /
    • v.27 no.5
    • /
    • pp.289-294
    • /
    • 2012
  • Resveratrol, natural polyphenol in grapes and red wine, is known to have the anti-proliferatory and anti-angiogenic effects in various cancer cells. In this study, we have investigated the effects of resveratrol in HT-29 colon cancer cells. Treatment of resveratrol in different concentrations and time inhibited proliferation of HT-29 colon cancer cells. We explored the effects of resveratrol on HT-29 colon cancer cell motility using a wound healing assay. In the absence of the resveratrol, the HT-29 cells are migrated along the edges of the wound and showed a large-scale migration, whereas dose- and time-dependent inhibition of cell flattening and spreading was observed in the presence of resveratrol. Resveratrol inhibited MMP-9 in a dose- and time-dependent on HT-29 colon cancer cells by Western blotting. In addition, resveratrol increased AMPK activity and decreased COX-2, VASP and VEGF expression. Treatment of compound C inhibited AMPK activity, however, the expression of VASP and COX-2 increased thus, COX-2 and VASP are modulated by AMPK. However treatment of celecoxib could not control AMPK activity but decreased VEGF expression. We suggest that resveratrol inhibits cell proliferation and migration through activation of AMPK and decreased COX-2, VASP and VEGF expression in HT-29 colon cancer cells.

Effect of secretory leukocyte protease inhibitor on migration and invasion of human KB oral carcinoma cells

  • Wang, Guanlin;Lim, Do-Seon;Choi, Baik-Dong;Park, Jin-Ju;Jeong, Soon-Jeong;Kim, Jin-Soo;Kim, Jae-Duk;Park, Jung-Su;Kim, Eung-Kwon;Kim, Byung-Hoon;Ham, Joo-Hyun;Jeong, Moon-Jin
    • Animal cells and systems
    • /
    • v.15 no.2
    • /
    • pp.139-146
    • /
    • 2011
  • Secretory leukocyte protease inhibitor (SLPI) plays an important role in promoting the invasion and metastasis of a range of cancer cells. However, there are no reports of the expression and function of SLPI in oral carcinoma cells. In this study, the oral carcinoma cell line KB was used to determine whether SLPI affects the proliferation, migration and invasion of oral carcinoma cells. RT-PCR and Western blotting revealed high levels of endogenous SLPI expression in KB cells as well as a strong increase in SLPI secretion after wounding compared to immortalized normal oral keratinocytes (INOK). The wound healing assay revealed more migration of KB cells than INOK cells, and the SLPI treatment increased the migration of KB cells. KB cell proliferation was increased significantly by the SLPI protein but decreased by SLPI-siRNA. SLPI strongly increased the migration and invasion of KB cells. On the other hand, SLPI-siRNA decreased the migration and invasion of KB cells. This suggests that SLPI plays an important role in the metastasis of oral carcinoma cells.

Diverse characters of Brennan's paw incision model regarding certain parameters in the rat

  • Kumar, Rahul;Gupta, Shivani;Gautam, Mayank;Jhajhria, Saroj Kaler;Ray, Subrata Basu
    • The Korean Journal of Pain
    • /
    • v.32 no.3
    • /
    • pp.168-177
    • /
    • 2019
  • Background: Brennan's rodent paw incision model has been extensively used for understanding mechanisms underlying postoperative pain in humans. However, alterations of physiological parameters like blood pressure and heart rate, or even feeding and drinking patterns after the incision have not been documented as yet. Moreover, though eicosanoids like prostaglandins and leukotrienes contribute to inflammation, tissue levels of these inflammatory mediators have never been studied. This work further investigates the antinociceptive effect of protein C after intra-wound administration. Methods: Separate groups of Sprague-Dawley rats were used for quantitation of cyclooxygenase (COX) activity and leukotriene B4 level by enzyme-linked immunosorbent assay, as well as estimation of cardiovascular parameters and feeding and drinking behavior after paw incision. In the next part, rats were subjected to incision and $10{\mu}g$ of protein C was locally administered by a micropipette. Both evoked and non-evoked pain parameters were then estimated. Results: COX, particularly COX-2 activity and leukotriene B4 levels increased after incision. Hemodynamic parameters were normal. Feeding and drinking were affected on days 1 and 3, and on day 1, respectively. Protein C attenuated non-evoked pain behavior alone up to day 2. Conclusions: Based upon current observations, Brennan's rodent paw incision model appears to exhibit a prolonged period of nociception similar to that after surgery, with minimal interference of physiological parameters. Protein C, which is likely converted to activated protein C in the wound, attenuated the guarding score, which probably represents pain at rest after surgery in humans.

Production of Recombinant Human Keratinocyte Growth Factor from Bombyx mori (Lepidopera: Bombycidae) Bm5 Cells (누에배양세포에서 인간형 재조합단백질 각질세포 성장인자 생산)

  • Han, Song-Yi;Jin, Cho-Yi;Kwon, Ki-Sang;Yun, Eun-Young;Goo, Tae-Won;Kim, Seung-Whan;Choi, Jong-Soon;Yu, Kweon;Kwon, O-Yu
    • Journal of Life Science
    • /
    • v.21 no.6
    • /
    • pp.907-911
    • /
    • 2011
  • Using silkworm Bombyx mori Bm5 cells, we established a stable cell line expressing the human keratinocyte growth factor (hKGF), named by the Bm5-hKGF cell, in which the protein hKGF is synthesized in the cell and secreted in the cell culture supernatant (CCS) at approximately 15-20 ng/ml. When the Bm5-hKGF cell was co-expressed with B. mori protein disulfide isomerase (bPDI) cDNA, its secretion increased by about two times the original amount. Through wound healing migration assay, it was demonstrated that the secreted hKGF included in the CCS has a very powerful biological activity of keratinocyte proliferation. We expect to produce useful human recombinant proteins from silkworm cultured cells in large quantities at low prices.

Effect of Fucoidan on Angiogenesis and Gene Expression in Human Umbilical Vein Endothelial Cells (후코이단이 혈관 내피세포의 신생혈관 생성 효과 및 관련 유전자의 발현에 미치는 영향)

  • Park, Ho;Kim, Beom-Su
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.49 no.4
    • /
    • pp.323-328
    • /
    • 2017
  • Angiogenesis is a process including members of the angiogenic factors. In particular, fibroblast growth factor 2 (FGF2) is considered the most potent angiogenic factor because it promotes cell proliferation and tube formation. A recent study reported that fucoidan derived from marine plant potentiated FGF-2 induced tube formation in human endothelial cells. On the other hand, the molecular mechanisms involved in the angiogenic activity of fucoidan and FGF2 are unknown. In this study, a fucoidan treatment promoted angiogenesis induced by FGF2. The effects of fucoidan on FGF2-induced angiogenesis were confirmed by a proliferation assay using a CellTiter96 Aqueous One solution after a treatment with fucoidan and FGF2. The tube formation and wound healing assay for the angiogenic activity were also confirmed. Reverse transcription PCR showed a change in the mRNA of vascular endothelial growth factor-A (VEGF-A), intercellular adhesion molecule-1 (ICAM-1), matrix metallopeptidase9 (MMP9), and the signal transducer and activator of transcription3 (STAT3). In summary, the Fucoidan/FGF2 treatment induced an increase in cell proliferation, improved the tube formation and wound healing activity, and altered the STAT3, VEGF-A, ICAM-1, and MMP9 mRNA expression levels. Further research will be needed to provide a scientific explanation in terms of cell-signaling and confirm the present findings.

Panax ginseng total protein promotes proliferation and secretion of collagen in NIH/3T3 cells by activating extracellular signal-related kinase pathway

  • Chen, Xuenan;Wang, Manying;Xu, Xiaohao;Liu, Jianzeng;Mei, Bing;Fu, Pingping;Zhao, Daqing;Sun, Liwei
    • Journal of Ginseng Research
    • /
    • v.41 no.3
    • /
    • pp.411-418
    • /
    • 2017
  • Background: Recently, protein from ginseng was studied and used for the treatment of several kinds of diseases. However, the effect of ginseng total protein (GTP) on proliferation and wound healing in fibroblast cells remains unclear. Methods: In this study, cell viability was analyzed using the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay. Cell cycle distribution was analyzed by flow cytometer. The levels of transforming growth factor ${\beta}1$, vascular endothelial growth factor, and collagens were analyzed by enzyme-linked immunosorbent assay and immunofluorescence staining. The expressions of cyclin A, phosphorylation of extracellular signal-related kinase (p-ERK1/2), and ERK1/2 were analyzed by Western blotting. Results: Our results showed that GTP promoted cell proliferation and increased the percentage of cells in S phase through the upregulation of cyclin A in NIH/3T3 cells. We also found that GTP induced the secretion of type I collagen, and promoted the expression of other factors that regulate the synthesis of collagen such as transforming growth factor ${\beta}1$ and vascular endothelial growth factor. In addition, the phosphorylation of ERK1/2 at Thr202/Tyr204 was also increased by GTP. Conclusion: Our studies suggest that GTP promoted proliferation and secretion of collagen in NIH/3T3 cells by activating the ERK signal pathway, which shed light on a potential function of GTP in promoting wound healing.

Antioxidant and Antiproliferative Activities of the Halophyte Angelica japonica Growing in Korean Coastal Area (한국 연안지역에 서식하는 갯강활의 항산화 및 암세포증식 억제 활성)

  • Jayapala, Priyanga S.;Oh, Jung Hwan;Kong, Chang-Suk;Sim, Hyun-Bo;Seo, Youngwan
    • Journal of Life Science
    • /
    • v.32 no.10
    • /
    • pp.749-761
    • /
    • 2022
  • This study evaluated the antioxidizing and antiproliferative effects of Angelica japonica extract and its solvent-partitioned fractions. A dried sample of the halophyte A. japonica was extracted twice using methylene chloride (CH2Cl2) and extracted twice again using methanol (MeOH). The combined crude extracts were then fractionated by solvent polarity into distilled water (water), n-butanol (n-BuOH), 85% aqueous methanol (85% aq.MeOH), and n-hexane fractions. The antioxidant activities of the crude extracts and their solvent-partitioned fractions were assessed according to their DPPH radical and peroxynitrite scavenging abilities, formation of intracellular reactive oxygen species (ROS), DNA oxidation, NO production, and ferric reducing antioxidant power (FRAP). The crude extract showed significant antioxidant activity in the overall antioxidizing bioassay systems. Among solvent-partitioned fractions, good antioxidant activities were observed in n-BuOH and 85% aq.MeOH fractions and significantly correlated with the polyphenol and flavonoid contents of the samples. Furthermore, all samples tested, including the crude extract, not only showed cytotoxic effects against human cancer cells (AGS, HT-29, MCF-7, and HT-1080) but also prevented cell migration in a dose-dependent manner in the wound healing assay using HT 1080. Among the solvent-partitioned fractions, the 85% aq.MeOH fraction most effectively inhibited the invasion of HT-1080 cells. Therefore, these results suggest that A. japonica may be a potential antioxidizing and antiproliferative agent.

Hizikia Fusiformis Hexane Extract Decreases Angiogenesis in Vitro and in Vivo (Hizikia fusiformis 추출물의 in vitro 및 in vivo에서 혈관신생 감소 연구)

  • Myeong-Eun Jegal;Yu-Seon Han;Shi-Yung Park;Ji-hyeok Lee;Eui-Yun Yi;Yung-Jin Kim
    • Journal of Life Science
    • /
    • v.33 no.9
    • /
    • pp.703-712
    • /
    • 2023
  • Angiogenesis, the formation of blood vessels from pre-existing vessels, is a multistep process regulated by modulators of angiogenesis. It is essential for various physiological processes, such as embryonic development, chronic inflammation, and wound repair. Dysregulation of angiogenesis causes many diseases, such as cancer, autoimmune diseases, rheumatoid arthritis, cardiovascular disease, and delayed wound healing. However, the number of effective anti-angiogenic drugs is limited. Recent research has focused on identifying potential drug candidates from natural sources. For example, marine natural products have been shown to have anti-cancer, anti-oxidant, anti-inflammatory, antiviral, and wound-healing effects. Thus, this study aimed to describe the angiogenesis inhibitory effect of Hizikia fusiforms (brown algae) extract. The hexane extract of H. fusiformis has shown inhibitory effects on in vitro angiogenesis assays, such as cell migration, invasion, and tube formation in human umbilical vein endothelial cells (HUVECs). The hexane extract of H. fusiformis (HFH) inhibited in vivo angiogenesis in a mouse Matrigel gel plug assay. In addition, the protein expression of vascular endothelial growth factor (VEGF), mitogen-activated protein kinase (MAPK)/extracellular signal kinase, and AKT serine/threonine kinase 1 decreased following treatment with H. fusiformis extracts. Our results demonstrated that the hexane extract of H. fusiformis (HFH) inhibits angiogenesis in vitro and in vivo.

A Study on the Skin Improvement of Ethanol and Hot Water Extracts from Scutellaria baicalensis (황금 에탄올 및 열수 추출물의 피부 개선 연구)

  • Seong Mi Cho;Yu Rim Won;Jin Oh Park;Hye Ja Lee
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.49 no.2
    • /
    • pp.183-192
    • /
    • 2023
  • In this study, we investigated the antioxidant activity, anti-inflammatory activity, whitening, moisturizing, wound-healing, cell proliferation and cell protective effects of 70% EtOH and hot water extract from Scutellaria baicalensis. For the anti-oxidative test, the 70% EtOH and hot water extract showed DPPH radical scavenging activities. In the anti-inflammatory tests, 70% EtOH and hot water extract inhibited the production of NO, pro-inflammatory cytokine (IL-6) and prostaglandin (PGE2). In addition, it was confirmed that the 70% EtOH and hot water extract inhibited the melanin production, and increased production of hyaluronic acid (HA), a moisturizing factor. As a result of cell migration and proliferation assay, 70% EtOH extract promoted the cell growth in HaCaT cell. Additionally, 70% EtOH and hot water extract showed cell protective effects against UVB, and 70% EtOH extract also showed cell protective effects agianst blue light. Based on these results, it is concluded that the 70% EtOH and hot water extract from Scutellaria baicalensis could be potentially applicable as anti-oxdiative, anti-inflammation, whitening, moisturizing, wound-healing, cell proliferation and cell protective effects in cosmetic natural materials.

ATM Signaling Pathway Is Implicated in the SMYD3-mediated Proliferation and Migration of Gastric Cancer Cells

  • Wang, Lei;Wang, Qiu-Tong;Liu, Yu-Peng;Dong, Qing-Qing;Hu, Hai-Jie;Miao, Zhi;Li, Shuang;Liu, Yong;Zhou, Hao;Zhang, Tong-Cun;Ma, Wen-Jian;Luo, Xue-Gang
    • Journal of Gastric Cancer
    • /
    • v.17 no.4
    • /
    • pp.295-305
    • /
    • 2017
  • Purpose: We previously found that the histone methyltransferase suppressor of variegation, enhancer of zeste, trithorax and myeloid-nervy-deformed epidermal autoregulatory factor-1 domain-containing protein 3 (SMYD3) is a potential independent predictive factor or prognostic factor for overall survival in gastric cancer patients, but its roles seem to differ from those in other cancers. Therefore, in this study, the detailed functions of SMYD3 in cell proliferation and migration in gastric cancer were examined. Materials and Methods: SMYD3 was overexpressed or suppressed by transfection with an expression plasmid or siRNA, and a wound healing migration assay and Transwell assay were performed to detect the migration and invasion ability of gastric cancer cells. Additionally, an MTT assay and clonogenic assay were performed to evaluate cell proliferation, and a cell cycle analysis was performed by propidium iodide staining. Furthermore, the expression of genes implicated in the ataxia telangiectasia mutated (ATM) pathway and proteins involved in cell cycle regulation were detected by polymerase chain reaction and western blot analyses. Results: Compared with control cells, gastric cancer cells transfected with si-SMYD3 showed lower migration and invasion abilities (P<0.05), and the absence of SMYD3 halted cells in G2/M phase and activated the ATM pathway. Furthermore, the opposite patterns were observed when SMYD3 was elevated in normal gastric cells. Conclusions: To the best of our knowledge, this study provides the first evidence that the absence of SMYD3 could inhibit the migration, invasion, and proliferation of gastric cancer cells and halt cells in G2/M phase via the ATM-CHK2/p53-Cdc25C pathway. These findings indicated that SMYD3 plays crucial roles in the proliferation, migration, and invasion of gastric cancer cells and may be a useful therapeutic target in human gastric carcinomas.