• Title/Summary/Keyword: worn surface

Search Result 289, Processing Time 0.024 seconds

Study on Improvement of Lubrication Characteristics for the Material of Compressor Friction Parts with Nano-oil (나노 오일을 이용한 압축기 습동부 재질의 윤활 특성 향상에 관한 연구)

  • Kim, Sung-Choon;Kim, Kyong-Min;Hwang, Yu-Jin;Park, Young-Do;Lee, Jae-Keun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.10
    • /
    • pp.559-563
    • /
    • 2009
  • Performance of refrigerant oil at the thrust-bearing and at the journal-bearing of a scroll compressor is a significant factor. This paper presents the friction and anti-wear characteristics of nano oil with a mixture of a refrigerant oil and carbon nano particles. The characteristics of friction and anti-wear using nano-oil is evaluated using the disk on disk tester for measuring friction surface temperature and the coefficient of friction. The average friction coefficient of nano-oil was reduced by 60% compared to raw oil under 600 N and 1,000 rpm. It is believed that the interaction of nano particles between surfaces can be improved the lubrication in the friction surfaces. Worn surfaces of frictional specimen were also investigated by the optical and atomic force microscopy. Conclusively, it is expected that wear and friction coefficient of compressor can be reduced by alignment applying nano-oil as refrigerant oil.

Wear Mechanism of CrN Coating on Aluminum Alloys Deposited by AIP Method

  • Kim, Seock-Sam;Suh, Chang-Min;Murakami, Ri-ichi
    • KSTLE International Journal
    • /
    • v.3 no.1
    • /
    • pp.43-48
    • /
    • 2002
  • Dry sliding wear and friction test of CrN coaling on two types of aluminum alloy substrates,6061 Al and 7075 Al deposited by arc ion plating, was peformed with a ball-on-disk tribometer. The effects of normal Bead and the mechanical properties of substrate on the friction coefficient and wear-resistance of CrN coating were investigated. The worn surfaces were observed by SEM. The results show that surface micro-hardness of CrN- coated 7075 Al is higher than that of CrN-coated 6061 Al. With an increase in normal lead, wear volume increases, while the friction coefficient decreases. The friction coefficient of CrN-coated 6061 Al is higher than that of CrN-coated 7075 Al, while the wear-resistance of CrN-coated 6061 Al is lower than the CrN-coated 7075 Al's, which indicates that the substrate mechanical properties have strong inf1uences on the friction coefficient and wear of CrN coating. The main wear mechanism was fragments of CrN coating, which were caused by apparent plastic deformation of substrate during wear test.

Analysis of sliding/Impacting Wear in T7be to Convex Spring Contact and Relevant Contact Problem

  • Kim, Hyung-Kyu;Lee, Young-Ho;Heo, Sung-Pil;Jung, Youn-Ho;Ha, Jae-Wook;Kim, Seock-Sam;Jeon, Kyeong-Lak
    • KSTLE International Journal
    • /
    • v.3 no.1
    • /
    • pp.60-67
    • /
    • 2002
  • Wear on the tube-to-spring contact is investigated experimentally, The vibration of the tube causes the wear while the springs support it As for the supporting conditions, the contacting normal farce of 5 N,0 N and the gap of 0.1 mm are applied. The gap condition is for considering the influence of simultaneous impacting and sliding on wear. The wear volume and depth decreases in the order of the 5 N,0 N and the gap conditions. This is explained from the contact geometry of the spring, which is convex of smooth contour, The contact shear force is regarded smaller in the case of the gap existence compared with the other conditions. The wear mechanism is considered from SEM observation of the worn surface. The variation of the normal contact traction is analysed using the finite element analysis to estimate the slip displacement range on the contact with consulting the fretting map.

Effect of MoS$_2$ and $Fe_2O_3$ Additives on the Tribological Behavior of the Plasma Sprayed Zirconia Based Coatings (MoS$_2$$Fe_2O_3$ 첨가제가 지르코니아계 용사코팅층의 마모마찰 특성에 미치는 영향)

  • 신종한;임대순;안효석
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.93-99
    • /
    • 1997
  • High Temperature wear behavior of plasma sprayed ZrO$_2$ and MoS$_2$, $Fe_2O_3$ coatings were investigated for high temperature wear resistance applications. The MoS$_2$, $Fe_2O_3$ added powders containing 2.5, 5.0, 7.5, 10.0 mol% of $MoS_2$, $Fe_2O_3$ for plasma spray were made by spray drying method. Wear test were performed at temperature ranges from room temperature to 600$\circ$C. The microstructural change of coatings and the worn. surface were examined by SEM and XRD. In ZrO$_2$ coating, the coefficient of friction and wear amount of room temperature to 400$\circ$C was increased with temperature and decreased with temperature over 400$\circ$C. The coefficient of friction and wear amount of MoS$_2$ added coatings were increased with temperature, but those of $Fe_2O_3$ added coatings had lower coefficient of friction and higher wear resistance than ZrO$_2$ coating.

  • PDF

Fabrication of Tungsten Probe Tips for AFM using Electrochemical Etching (전기화학적 에칭법을 이용한 AFM용 텅스텐 탐침 제작에 관한 연구)

  • Han, Gue-Bum;Jang, Hyuna;Ahn, Hyo-Sok
    • Tribology and Lubricants
    • /
    • v.29 no.4
    • /
    • pp.213-217
    • /
    • 2013
  • As commercial atomic force microscopy (AFM) probes made of Si and $Si_3N_4$ have low stiffness, it is difficult to induce sufficient elastic deformation on the surface of a specimen in a tapping mode. Therefore, high-guality phase contrast images can not obtained. On the other hand, a tungsten AFM probe has relatively higher stiffness than a commercial AFM probe. Accordingly, it is expected to provide an enhanced phase contrast image, which is an effective tool for achieving a better understanding of the micromechanical properties of worn surfaces and wear mechanisms. In this study, on electrochemical etching method was optimized to fabricate tungsten probe tips for an AFM. Electrochemical etching was performed by applying pulse waves with a 20% duty cycle at various voltages instead of only a DC voltage, which has been commonly used.

Correlation of Microstructure and Tribological Properties of Mo Blended Fe-Base Coatings Fabricated by Atmospheric Plasma Spraying (대기 플라즈마 용사 공정에 의해 제조된 철계합금-몰리브덴 혼합 코팅층의 미세조직 및 내마모성)

  • Lee, Illjoo;Park, Hyungkwon;Lee, Changhee
    • Journal of Welding and Joining
    • /
    • v.32 no.5
    • /
    • pp.65-71
    • /
    • 2014
  • Atmospheric plasma spraying (APS) is world-widely used process in the automotive industry as a method to provide wear resistance coatings for engine cylinder bore, using various materials. The weight of engine blocks can be considerably decreased by removing cast iron liners, which can finally result in the improvement of fuel efficiency. In this study, five kinds of powder materials, 1.2C steel powder and 1.2C steel powder mixed with 5, 10, 15, 20 wt.%. molybdenum powder, were deposited by atmospheric plasma spraying in order to investigate the effect of molybdenum on the wear resistance of coatings. Microstructural analysis showed that molybdenum splats were well distributed in 1.2C steel matrix with intimate bonding. The molybdenum added coatings showed better tribological properties than 1.2C steel coating. However, above the 15 wt.%. blending fraction, wear resistance was somewhat degraded with poor roughness of worn surface due to the brittle fracture occurred in molybdenum splats. Consequently, compared to conventional liner material, gray cast iron, 10 wt. pct. molybdenum blended 1.2C steel coating showed much better tribological properties and therefore it looks very feasible to replace gray cast iron liner.

Analysis of the Sliding Wear Mechanism of Pure Iron Tested Against Different Counterparts in Various Atmospheres (상대재와 분위기에 따른 순철의 미끄럼 마멸 기구 분석)

  • Koo, B.W.;Gwon, H.W.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.26 no.6
    • /
    • pp.365-371
    • /
    • 2017
  • During sling wear of a ferrous metal, a surface layer is formed. Its microstructure, constituting phases, and mechanical property are different from those of the original wearing material. Since wear occurs at the layer, it is important to characterize the layer and understand how wear rate changes with different layers. Various layers are formed depending on external wear conditions such as load, sliding speed, counterpart material, and environmental conditions. In this research, sliding wear tests of pure iron were carried out against two different counterparts (AISI 52100 bearing steel and $Al_2O_3$) in the air and in an inert Ar gas atmosphere. Pure iron was employed to exclude other effects from secondary phases in steel on the wear. Wear tests were performed at room temperature. Worn surfaces, wear debris, and cross-sections were analyzed after the test. It was found that these two different counterparts and environments produced diverse layers, resulting in significant changes in wear rate. Against the bearing steel, pure iron showed higher wear rate in an Ar atmosphere due to severe adhesion than that in the air. On the contrary, the iron showed much higher wear rate in the air against $Al_2O_3$. Different layers and wear rates were analyzed and discussed by oxidation, severe plastic deformation, and adhesion at wearing surfaces.

A Propotition of a New Parameter in Ceramic Wear(I) Friction and Wear Characteristics of Silicon Nitride and Zirconia (세라믹 마멸에 있어서의 새로운 파라메터 제안 (I) 질화규소와 지르코니아의 마찰$\cdot$마멸 특성)

  • ;;Hsu, S. M.
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.6
    • /
    • pp.1441-1455
    • /
    • 1993
  • Under unlubricated condition, the friction and wear tests of silicon nitride and zirconia manufactured by HIP were carried out at room temperature. The wear resistance of silicon nitride was superior to that of zirconia under low load, whereas the wear resistance of zirconia was superior to that of silicon nitride under high load. Wear model of ceramic was suggested by the microscopic SEM observation of worn surfaces and debris. Theoretical analysis and discussions based on linear fracture mechanics were made out about this ceramic wear model. From the theoretical analysis, a new nondimensional parameter, Scf, was introduced to estimate wear rate of ceramics. This new nondimentional parameter consists of contact pressure, surface defect of contact material, frictional coefficient and fracture toughness.

Microstructure and Wear Properties of High Strength Yellow Brass by Addition of Fe, Cr, Mn, Si and Ni (Fe, Cr, Mn, Si, Ni의 첨가에 의한 고력황동의 미세조직과 마모특성)

  • Park, Jae-Yong;Kang, Choon-Sik;Shin, Yun-Ho;Bae, Jeong-Chan
    • Journal of Korea Foundry Society
    • /
    • v.17 no.3
    • /
    • pp.258-266
    • /
    • 1997
  • The purpose of this study is to improve hardness and wear resistance of high strength yellow brass by adding Fe, Cr, Mn, Si and Ni. Results showed that NiO, $FeCr_2O_4$ and intermetallic compound $Mn_5Si_3$ were produced when Ni, Fe-Cr and Mn-Si were added to the yellow brass. The hardness and wear tests showed the best results with the presence of the product precipitates and intermetallic compound. The calculation of relative wear resistance by volume fraction of each phases showed that the relative wear resistance of $Mn_5Si_3$ had the highest value, that of ${\beta}$ phase had the lowest. Observation of the worn surface showed that the main wear mechanism were found to be the abrasive wear, and also showed that the wear is caused by mechanical failure at the early stage.

  • PDF

Wear-characteristics variation of Fe-C-N alloy with changing content of carbon and nitrogen (탄소와 질소 함량에 따른 탄질소 복합첨가강의 내마멸 특성 변화)

  • Park, J.K.;Yi, S.K.;Kim, S.J.;Kim, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.385-388
    • /
    • 2009
  • Dry-sliding-wear behavior of Fe-18Cr-l0Mn steel with various carbon and nitrogen contents was characterized, and the effect of carbon and nitrogen contents on the wear was investigated. Dry sliding wear tests of the steel were carried out at room temperature against an AISI 52100 bearing steel ball using a pin-on-disk wear tester. Applied wear loads were varied from 10 N to 100 N, and the sliding distance was fixed as 720 m. Worn surfaces and the wear debris of the steel were examined using an SEM to find out the wear mechanism. It was found that the Fe-18Cr-10Mn with both carbon and nitrogen exhibited superior wear resistance to the steel with only nitrogen. The wear resistance of the Fe-18Cr-10Mn-xC-yN alloy increased with the increase of the carbon content. The excellent wear resistance of the Fe-18Cr-10Mn-xC-yN alloy was explained by the increased strain-hardening capability with the interstitial atoms.

  • PDF