• Title/Summary/Keyword: working gas

Search Result 708, Processing Time 0.024 seconds

Effect of Working Temperature on Sensitivity of Au/SnO2 Core-Shell Structure Nanoparticles for CO Gas (Au/SnO2 core-shell 나노구조 센서의 구동온도가 CO 감동에 미치는 영향)

  • Yu, Yeon-Tae
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.456-460
    • /
    • 2012
  • Au/$SnO_2$ core-shell structure nanoparticles (NPs) were synthesized by microwave hydrothermal method, and the effect of working temperature on sensitivity of Au/$SnO_2$ core-shell NPs for CO gas was investigated. The $SnO_2$ shell layer was consisted of $SnO_2$ primary particles with 4.5 nm diameter. The response of Au/$SnO_2$ core-shell NPs for CO gas was maximized at the working temperature of $350^{\circ}C$ while the sensitivity increased with decreasing the working temperature due to the low grain size effect of $SnO_2$ NPs on the response of CO gas.

Experimental study on GM-type pulse tube refrigerator with neon as working fluid (네온을 작동유체로 하는 GM형 맥동관 냉동기의 실험적 연구)

  • Kim, Hyo-Bong;Park, Jong-Ho
    • Progress in Superconductivity and Cryogenics
    • /
    • v.13 no.3
    • /
    • pp.31-35
    • /
    • 2011
  • This paper describes experimental study on GM-type pulse tube refrigerator with neon as a working fluid instead of helium. Neon gas has similar compression characteristics with helium gas because it is a monoatoimc gas. In experiments, a cooling performance test was performed with same compressor and pulse tube refrigerator for neon and helium as working gas. From experimental results, a PTR with neon show the improved cooling performance than a PTR with helium. Cooling performance and operating characteristics of a PTR were discussed and compared for two different working gas.

Orientation dependence of GM-type pulse tube refrigerator (GM형 맥동관 냉동기의 저온부 경사도에 따른 냉각 성능 특성 연구)

  • Ko, Jun-Seok;Kim, Hyo-Bong;Park, Seong-Je;Hong, Yong-Ju;Yeom, Han-Kil;Lee, Chung-Soo;Kang, In-Su;Koh, Deuk-Yong
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.3
    • /
    • pp.48-52
    • /
    • 2012
  • This paper describes experimental study on the orientation dependence of GM-type pulse tube refrigerator with helium and neon as working gas. A pulse tube refrigerator generates refrigeration work with gas expansion by gas displacer in the pulse tube. The pulse tube is only filled with working gas and there exists secondary flow due to large temperature difference between cold-end and warm-end. The stability of secondary flow is affected by orientation of cold-head and thus cooling performance is deteriorated by gas mixing due to secondary flow. In this study, a single stage GM-type pulse tube with orifice valve as a phase control device is fabricated and tested. The fabricated pulse tube refrigerator is tested with two different working gases of helium and neon. First, optimal valve opening and operating frequency are determined with experimental results of no-load test. And then, the variation of no-load temperature as orientation angle of cold-head is measured for two different working gases. Effect of orientation dependence of cold-head as working gas is discussed with experimental results.

Effect of Working Gas Pressure on Misfirng of ac PDP at High Ambient Temperature

  • Ryu, Jae-Hwa;Choi, Joon-Young;Kim, Dong-Hyun;Kim, Joong-Kyun;Kim, Young-Kee;Lee, Ho-Jun;Park, Chung-Hoo
    • Journal of Information Display
    • /
    • v.4 no.4
    • /
    • pp.25-32
    • /
    • 2003
  • One of the important problems in ac PDP in recent years is the misfiring of ac PDP at high ambient temperatures which consequently degrades the image quality of the ac PDP. This may be due to the change of working gas pressure and/or MgO surface characteristics at high ambient temperatures. This paper deals with the effect of working gas pressure on the misfiring of ac PDP at high ambient temperature. From this study, we found that the main cause of the misfiring at high ambient temperature is the increase in discharge firing voltage induced by increased working gas pressure

Analysis of Working Environment and Ventilation Efficiency in Pig House using Computational Fluid Dynamics (전산유체역학을 사용한 양돈장 내 작업환경 환기효율성 분석)

  • Oh, Byung-Wook;Lee, Seong-Won;Kim, Hyo-Cher;Seo, Il-Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.2
    • /
    • pp.85-95
    • /
    • 2019
  • The internal environment in pig house is closely related to the animal productivity. In addition, it is important to consider a working environment inside the pig house due to high gas and dust concentrations. The poor working environment inside the pig house can cause health problems including respiratory diseases. To analyze the working environment, it is important to evaluate the ventilation efficiency to effectively remove harmful gases and dust. The purpose of this study is to develop a 3D CFD model to analyze the working environment in the pig house. CFD model was validated by comparing air temperature distributions between CFD computed and field measured data. The average air flow rate at the pig height was 40.1 % lower than the working height when incoming air was concentrated on upper layer by the installed ventilation system on the experimental pig house. Using the validated CFD model, the regional ventilation efficiency was computed by the TGD(tracer gas decay) method at the pig and working heights. There was a difference of ventilation efficiency on 14 % between the air stagnated section and the rest sections. Stagnated gas concentration can be effected by animal and human health.

The Effect of Working Gas Xex+Ne1-x on the Electro-optical Characteristics of AC PDP (AC PDP의 전기광학적 특성에 미치는 동작 Gas Xex+Ne1-x의 영향)

  • Park, Chung-Hoo;Yoo, Su-Bok;Lee, Don-Kyu;Lee, Hae-June;Lee, Ho-Jun;Kim, Jae-Sung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.1
    • /
    • pp.142-146
    • /
    • 2007
  • Nowadays, itis inevitable trend to use high Xe gas contents for increase luminous efficiency and luminance in plasma display panel. However, the increase of Xe gas contents causes the driving voltage, although the brightness is increase. In this paper, we study the characteristics of electro optical according to Xe gas contents and gas pressure. Electro-optical characteristics were investigated by the discharge voltage, luminance and luminous efficacy measurements, respectively. With some increasing Xe gas contents and pressure, the electro-optical properties increased. However, the characteristics of electro-optical begin to be saturated, when too high increased Xe gas contents and pressure.

A Study on the Efficiency Improvement of the Power Generation Process Using New Working Fluids Composed of Methane, Ethylene, Ethane, and Propane and the Cold Heat Contained in the Liquefied Natural Gas (메탄, 에틸렌, 에탄 및 프로판으로 구성된 새로운 작동 유체와 액화 천연가스의 냉열을 활용한 발전 공정의 효율 향상에 대한 연구)

  • JUNGHO CHO
    • Journal of Hydrogen and New Energy
    • /
    • v.35 no.3
    • /
    • pp.318-323
    • /
    • 2024
  • In this paper, computer modeling works have been performed for the power generation Rankine cycle using new working fluids and liquefied natural gas (LNG) cold heat. PRO/II with PROVISION released January 2023 from AVEVA company was used, and Peng-Robinson equation of the state model with Twu's alpha function was selected for the modeling of the power generation cycle. Optimal working fluid composition was determined to maximize LNG cold heat to increase power generation efficiency and net power production.

Numerical and experimental investigation of non-stationary processes in the supersonic gas ejector

  • Tsipenko, Anton;Kartovitskiy, Lev;Lee, Ji-Hyung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.469-473
    • /
    • 2009
  • The supersonic gas ejector, as gas dynamic appliance, has been applied for a long time because of simplicity and reliability. However, for the prediction of ejector performances with given parameters, that is, working gas pressure and the nozzle shape, it is necessary to raise accuracy of modelling for properties of ejector gas flow. The purpose of the represented work is to compare one-dimensional modelling and numerical results with experimental results. The ejector with a conic nozzle has been designed and tested (Mach number at the nozzle exit section was 3.31, the nozzle throat diameter - 6 mm). Working gas - nitrogen, was brought from system of gas bottles. Diameter of the mixture chamber at the nozzle exit section was limited by condensation temperature of nitrogen and equaled 20 mm. The one-dimensional theory predicted the minimal starting pressure equaled 8.18 bar (absolute) and 0.051 bar in the vacuum chamber. Accordingly the minimal starting pressure was 9.055 bar and 0.057 in the vacuum chamber bar have been fixed in experiment.

  • PDF

Influence of Temporal and Permanent Image Sticking Characteristics Under Variable Panel Working Gas Pressure in 42-in. AC-PDPs

  • Park, Choon-Sang;Jang, Soo-Kwan;Kim, Jae-Hyun;Tae, Heung-Sik;Jung, Eun-Young;Ahn, Jung-Chull;Heo, Eun-Gi
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1617-1620
    • /
    • 2008
  • The effects of the temporal and permanent bright image stickings were examined under variable panel working gas pressure in the 42-in. ac-PDP with a high Xe (11 %) content. In the cells with and without temporal and permanent bright image stickings, the display luminance, firing voltage, and Vt closed curve were measured relative to the working gas pressure. With a decrease in the working gas pressure, the temporal bright image sticking was observed to be reduced, whereas the permanent bright image sticking was observed to be deteriorated.

  • PDF

Analysis of Transient Thermal Characteristics in a Gas-Loaded Heat Pipe (가스내장 히트파이프의 과도 열특성 해석)

  • 박병규;김근오;김무근
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.6
    • /
    • pp.514-523
    • /
    • 2001
  • The thermal performance characteristics of gas-loaded heat pipe(GLHP) were investigated by using transient diffuse-front model. Numerical evaluation of the GLHP is made with water as a working fluid and Nitrogen as control gas in the stainless steel tube. The transient vapor temperature and wall temperature were obtained. It is found that the temperature profiles and gas mole fraction distribution have been mainly influence by the diffusion between working fluid and noncondensable control gas in the condenser of GLHP. It is also found that he large power input make the diffusion region smaller.

  • PDF