• Title/Summary/Keyword: working fluid of ammonia

Search Result 39, Processing Time 0.021 seconds

Comparative Thermodynamic Analysis of Organic Rankine Cycle and Ammonia-Water Rankine Cycle (유기랭킨사이클과 암모니아-물 랭킨사이클의 열역학적 성능의 비교 해석)

  • KIM, KYOUNG HOON;KIM, MAN-HOE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.5
    • /
    • pp.597-603
    • /
    • 2016
  • In this paper a comparative thermodynamics analysis is carried out for organic Rankine cycle (ORC) and ammonia-water Rankine cycle (AWRC) utilizing low-grade heat sources. Effects of the working fluid, ammonia concentration, and turbine inlet pressure are systematically investigated on the system performance such as mass flow rate, pressure ratio, turbine-exit volume flow, and net power production as well as the thermal efficiency. Results show that ORC with a proper working fluid shows higher thermal efficiency than AWRC, however, AWRC shows lower mass flow rate of working fluid and lower pressure ratio of expander than ORC.

Performance Analysis of Kalina Cycle using Ammonia-Water Mixture as Working Fluid for Use of Low-Temperature Energy Source (저온 열원 활용을 위한 암모니아-물 혼합물을 작동유체로 하는 칼리나 사이클의 성능 해석)

  • Kim, Kyoung-Hoon;Ko, Hyung-Jong;Kim, Se-Woong
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.1
    • /
    • pp.109-117
    • /
    • 2011
  • Since the thermal performance of cycles for use of low-temperature source is low if a pure working fluid is used, the cycles using ammonia-water binary mixture as a working fluid has attracted much attention over past two decades. Recently, several commercial power plants using Kalina cycles have been built and being operated successfully. In this work thermodynamic performance of Kalina cycles using ammonia-water mixture as a working fluid is investigated for the purpose of extracting maximum power from low-temperature energy source. Special attention is paid to the effect of system parameters such as concentration of ammonia and turbine inlet pressure on the characteristics of the system. Results show that the system performance is influenced sensitively by the ammonia concentration, and the role of the performance of heat exchangers is crucial.

Study on the Rankine Cycle using Ammonia-Water Mixture as Working Fluid for Use of Low-Temperature Waste Heat (저온폐열 활용을 위한 암모니아-물 혼합물을 작업유체로 하는 랭킨사이클에 관한 연구)

  • Kim, Kyoung-Hoon;Kim, Se-Woong;Ko, Hyung-Jong
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.6
    • /
    • pp.570-579
    • /
    • 2010
  • Since the temperature of waste heat source is relatively low, it is difficult to maintain high level of efficiency in power generation when the waste heat recovery is employed in the system. In an effort to improve the thermal efficiency and power output, use of ammonia-water mixture as a working fluid in the power cycle becomes a viable option. In this work, the performance of ammonia-water mixture based Rankine cycle is thoroughly investigated in order to maximize the power generation from the low temperature waste heat. In analyzing the power cycle, several key system parameters such as mass fraction of ammonia in the mixture and turbine inlet pressure are studied to examine their effects on the system performance. The results of the cycle analysis find a substantial increase both in power output and thermal efficiency if the fraction of ammonia increases in the working fluid.

Study on Regenerative Rankine Cycle with Partial-Boiling Flow Using Ammonia-Water Mixture as Working Fluid (암모니아-물 작동유체의 부분증발유동을 적용한 재생 랭킨사이클에 관한 연구)

  • Kim, Kyoung-Hoon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.3
    • /
    • pp.223-230
    • /
    • 2011
  • The power cycle using ammonia-water mixture as a working fluid is a possible way to improve efficiency of the system of low-temperature source. In this work thermodynamic performance of the ammonia-water regenerative Rankine cycle with partial-boiling flow is analyzed for purpose of extracting maximum power from the source. Effects of the system parameters such as mass fraction of ammonia, turbine inlet pressure or ratio of partial-boiling flow on the system are parametrically investigated. Results show that the power output increases with the mass fraction of ammonia but has a maximum value with respect to the turbine inlet pressure, and is able to reach 22 kW per unit mass flow rate of source air at $180^{\circ}C$.

Thermodynamic Performance Analysis of Ammonia-Water Power Generation System Using Low-temperature Heat Source and Liquefied Natural Gas Cold Energy (저온 열원과 LNG 냉열을 이용하는 암모니아-물 동력 사이클의 열역학적 성능 해석)

  • Kim, Kyoung Hoon;Kim, Kyung Chun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.6
    • /
    • pp.483-491
    • /
    • 2014
  • In this study, a thermodynamic analysis was carried out for a combined power generation system using a low-temperature heat source in the form of sensitive energy and liquefied natural gas cold energy. An ammonia-water mixture, which is a zeotropic mixture, was used as the working fluid, and systems with and without a regenerator were comparatively analyzed. The effects of the mass fraction of ammonia and the condensation temperature of the working fluid on the system variables, including the net work production, exergy destruction, and thermal and exergy efficiencies, are analyzed and discussed. The results show that the performance characteristics of the system varied sensitively with the ammonia concentration or condensation temperature of the working fluid. The system without regeneration was found to be better in relation to the net work per unit mass of the source fluid, whereas the system with regeneration was better in relation to the thermal or exergy efficiency.

CFD Performance Analysis and Design of a 8kW Class Radial Inflow Turbine for Ocean Thermal Energy Conversion Using a Working Fluid of Ammonia (암모니아 작동유체를 이용한 해수온도차발전용 8kW급 구심터빈의 설계 및 CFD 성능해석)

  • Mo, Jang-Oh;Cha, Sang-Won;Kim, You-Taek;Lim, Tae-Woo;Lee, Young-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.8
    • /
    • pp.1030-1035
    • /
    • 2012
  • In this research, we analysed design and CFD analysis of an inflow radial turbine for OTEC with an output power of 8kW using an working fluid of ammonia. The inflow radial turbine consists of scroll casing, vain nozzle with 18 blade numbers and rotor blade with 13 blade numbers. Mass flow rate, and inlet temperature are 0.5kg/s and $25^{\circ}C$ respectively, and variable rotational speeds were applied between 12,000 and 36,000 with 3,000 rpm intervals. As the results according to the rotational speeds, the designed speed is 24,000 rpm where maximum efficiency exists. The maximum efficiency and output power are 88.66% and 8.52kW, respectively. Through this study, we expect that the analysed results will be used as the design material for the composition of the turbine optimal design parameters corresponding to the target output power under various working material conditions.

Comparative Exergy Analysis of Kalina and Organic Rankine Cycles for Conversion of Low-Grade Heat Source (저등급 열원의 변환을 위한 칼리나 사이클과 유기 랭킨 사이클의 엑서지 성능의 비교 해석)

  • KIM, KYOUNG HOON;JUNG, YOUNG GUAN;KO, HYUNG JONG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.1
    • /
    • pp.105-111
    • /
    • 2020
  • The organic Rankine cycle (ORC) and the Kalina cycle system (KCS) are being considered as the most feasible and promising ways to recover the low-grade finite heat sources. This paper presents a comparative exergetical performance analysis for ORC and Kalina cycle using ammonia-water mixture as the working fluid for the recovery of low-grade heat. Effects of the system parameters such as working fluid selection, turbine inlet pressure, and mass fraction of ammonia on the exergetical performance are parametrically investigated. KCS gives lower lower exergy destruction ratio at evaporator and higher second-law efficiency than ORC. The maximum exergy efficiency of ORC is higher than KCS.

Thermal Analysis of a Combined Absorption Cycle of Cogeneration of Power and Cooling for Use of Low Temperature Source (저온 열원의 활용을 위한 흡수 발전/냉각 복합 사이클의 열적 해석)

  • Kim, Kyoung-Hoon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.6
    • /
    • pp.413-420
    • /
    • 2011
  • Thermodynamic cycles using binary mixtures as working fluids offer a high potential for utilization of low-temperature heat sources. This paper presents a thermodynamic performance analysis of Goswami cycle which was recently suggested to produce power and cooling simultaneously and combines the Rankine cycle and absorption refrigeration cycle by using ammoniawater mixture as working fluid. Effects of the system parameters such as concentration of ammonia and turbine inlet pressure on the system are parametrically investigated. Results show that refrigeration capacity or thermal efficiency has an optimum value with respect to ammonia concentration as well as to turbine inlet pressure.

Thermodynamic Performance Analysis of Ammonia-Water Rankine Cycle and Organic Rankine Cycle Using Cold Energy of LNG (LNG 냉열을 이용하는 암모니아-물 랭킨 사이클과 유기 랭킨 사이클의 열역학적 성능 특성 해석)

  • KIM, KYOUNG HOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.4
    • /
    • pp.363-371
    • /
    • 2020
  • Recently, the technologies to utilize the cold energy of liquefied natural gas (LNG) have attracted significant attention. In this paper, thermodynamic performance analysis of combined cycles consisting of ammonia Rankine cycle (AWR) and organic Rankine cycle (ORC) with LNG Rankine cycle to recover low-grade heat source and the cold energy of LNG. The mathematical models are developed and the effects of the important system parameters such as turbine inlet pressure, ammonia mass fraction, working fluid on the system performance are systematically investigated. The results show that the thermal efficiency of AWR-LNG cycle is higher but the total power production of ORC-LNG cycle is higher.

Effects of Charging Conditions on Evaporating Temperature for Diffusion Absorption Refrigerator (확산형 흡수식 냉장고에서 작동매체 충진조건이 증발온도에 미치는 영향)

  • 김선창;김영률;백종현;박승상
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.10
    • /
    • pp.828-834
    • /
    • 2003
  • A diffusion absorption refrigerator is a heat-generated refrigeration system. It uses a three-component working fluid consisting of the refrigerant (ammonia), the absorbent (water) and the auxiliary gas (hydrogen or helium). In this study, experimental investigations have been carried out to examine the effects of charging conditions of working fluids on the evaporating temperature for diffusion absorption refrigerator. Experimental parameters considered in the present experiments are charging concentration, solution charge and system pressure determined by auxiliary gas charged. As a result, in the charging condition of 35% of concentration and 20 kg$_{f}$cm$^2$ of system pressure, the system has the lowest evaporating temperature. It was found that there exists a minimum value of solution charge for the operation of diffusion absorption refrigerator.r.