• 제목/요약/키워드: word2vec

검색결과 224건 처리시간 0.03초

한국어 뉴스 분석 성능 향상을 위한 번역 전처리 기법 (Translation Pre-processing Technique for Improving Analysis Performance of Korean News)

  • 이지민;정다운;구영현;유성준
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2020년도 하계학술대회
    • /
    • pp.619-623
    • /
    • 2020
  • 한국어는 교착어로 1개 이상의 형태소가 단어를 이루고 있기 때문에 텍스트 분석 시 형태소를 분리하는 작업이 필요하다. 자연어를 처리하는 대부분의 알고리즘은 영미권에서 만들어졌고 영어는 굴절어로 특정 경우를 제외하고 일반적으로 하나의 형태소가 단어를 구성하는 구조이다. 그리고 영문은 주로 띄어쓰기 위주로 토큰화가 진행되기 때문에 텍스트 분석이 한국어에 비해 복잡함이 떨어지는 편이다. 이러한 이유들로 인해 한국어 텍스트 분석은 영문 텍스트 분석에 비해 한계점이 있다고 알려져 있다. 한국어 텍스트 분석의 성능 향상을 위해 본 논문에서는 번역 전처리 기법을 제안한다. 번역 전처리 기법이란 원본인 한국어 텍스트를 영문으로 번역하고 전처리를 거친 뒤 분석된 결과를 재번역하는 것이다. 본 논문에서는 한국어 뉴스 기사 데이터와 번역 전처리 기법이 적용된 영문 뉴스 텍스트 데이터를 사용했다. 그리고 주제어 역할을 하는 키워드를 단어 간의 유사도를 계산하는 알고리즘인 Word2Vec(Word to Vector)을 통해 유사 단어를 추출했다. 이렇게 도출된 유사 단어를 텍스트 분석 전문가 대상으로 성능 비교 투표를 진행했을 때, 한국어 뉴스보다 번역 전처리 기법이 적용된 영문 뉴스가 약 3배의 득표 차이로 의미있는 결과를 도출했다.

  • PDF

LDA와 BERTopic을 이용한 토픽모델링의 증강과 확장 기법 연구 (Topic Model Augmentation and Extension Method using LDA and BERTopic)

  • 김선욱;양기덕
    • 정보관리학회지
    • /
    • 제39권3호
    • /
    • pp.99-132
    • /
    • 2022
  • 본 연구의 목적은 LDA 토픽모델링 결과와 BERTopic 토픽모델링 결과를 합성하는 방법론인 Augmented and Extended Topics(AET)를 제안하고, 이를 사용해 문헌정보학 분야의 연구주제를 분석하는 데 있다. AET의 실제 적용결과를 확인하기 위해 2001년 1월부터 2021년 10월까지의 Web of Science 내 문헌정보학 학술지 85종에 게재된 학술논문 서지 데이터 55,442건을 분석하였다. AET는 서로 다른 토픽모델링 결과의 관계를 WORD2VEC 기반 코사인 유사도 매트릭스로 구축하고, 매트릭스 내 의미적 관계가 유효한 범위 내에서 매트릭스 재정렬 및 분할 과정을 반복해 증강토픽(Augmented Topics, 이하 AT)을 추출한 뒤, 나머지 영역에서 코사인 유사도 평균값 순위와 BERTopic 토픽 규모 순위에 대한 조화평균을 통해 확장토픽(Extended Topics, 이하 ET)을 결정한다. 최적 표준으로 도출된 LDA 토픽모델링 결과와 AET 결과를 비교한 결과, AT는 LDA 토픽모델링 토픽을 한층 더 구체화하고 세분화하였으며 ET는 유효한 토픽을 발견하였다. AT(Augmented Topics)의 성능은 LDA 이상이었으며 ET(Extended Topics)는 일부 경우를 제외하고 대부분 LDA와 유사한 수준의 성능을 나타내었다.

비정형 텍스트 데이터 분석을 활용한 기록관리 분야 연구동향 (Research Trends in Record Management Using Unstructured Text Data Analysis)

  • 홍덕용;허준석
    • 한국기록관리학회지
    • /
    • 제23권4호
    • /
    • pp.73-89
    • /
    • 2023
  • 본 연구에서는 텍스트 마이닝 기법을 활용하여 국내 기록관리 연구 분야의 비정형 텍스트 데이터인 국문 초록에서 사용된 키워드 빈도를 분석하여 키워드 간 거리 분석을 통해 국내기록관리 연구 동향을 파악하는 것이 목적이다. 이를 위해 한국학술지인용색인(Korea Citation Index, KCI)의 학술지 기관통계(등재지, 등재후보지)에서 대분류(복합학), 중분류 (문헌정보학)으로 검색된 학술지(28종) 중 등재지 7종 1,157편을 추출하여 77,578개의 키워드를 시각화하였다. Word2vec를 활용한 t-SNE, Scattertext 등의 분석을 수행하였다. 분석 결과, 첫째로 1,157편의 논문에서 얻은 77,578개의 키워드를 빈도 분석한 결과, "기록관리" (889회), "분석"(888회), "아카이브"(742회), "기록물"(562회), "활용"(449회) 등의 키워드가 연구자들에 의해 주요 주제로 다뤄지고 있음을 확인하였다. 둘째로, Word2vec 분석을 통해 키워드 간의 벡터 표현을 생성하고 유사도 거리를 조사한 뒤, t-SNE와 Scattertext를 활용하여 시각화하였다. 시각화 결과에서 기록관리 연구 분야는 두 그룹으로 나누어졌는데 첫 번째 그룹(과거)에는 "아카이빙", "국가기록관리", "표준화", "공문서", "기록관리제도" 등의 키워드가 빈도가 높게 나타났으며, 두 번째 그룹(현재)에는 "공동체", "데이터", "기록정보서비스", "온라인", "디지털 아카이브" 등의 키워드가 주요한 관심을 받고 있는 것으로 나타났다.

단어 임베딩 및 벡터 유사도 기반 게임 리뷰 자동 분류 시스템 개발 (Development of An Automatic Classification System for Game Reviews Based on Word Embedding and Vector Similarity)

  • 양유정;이보현;김진실;이기용
    • 한국전자거래학회지
    • /
    • 제24권2호
    • /
    • pp.1-14
    • /
    • 2019
  • 게임은 소프트웨어 특성상 출시 후 사용자들의 반응을 빠르게 파악하여 개선하는 것이 중요하다. 하지만 구글 플레이 앱 스토어 등 사용자들이 게임을 다운로드하고 리뷰를 올릴 수 있는 대부분의 사이트들은 게임 리뷰에 대한 매우 제한적이고 모호한 분류 기능만을 제공한다. 따라서 본 논문에서는 사용자들이 사이트에 올린 게임 리뷰를 보다 명확하고 운영에 유용한 주제들로 자동 분류하는 시스템을 개발한다. 본 논문에서 개발한 시스템은 리뷰에 포함된 단어들을 대표적인 단어 임베딩 모델인 word2vec을 사용하여 벡터들로 변환하고, 이 벡터들과 각 주제 간 유사도를 측정하여 해당 리뷰를 관련된 주제로 분류한다. 특히 분류 성능에 직접적인 영향을 미치는 벡터 간 유사도 측정 방법을 선택하기 위해 본 연구에서는 대표적인 벡터 간 유사도 측정 방법인 유클리디안 유사도, 코사인 유사도, 확장된 자카드 유사도의 성능을 실제 데이터를 사용하여 비교하였다. 또한 어떤 리뷰가 둘 이상의 주제에 해당하는 경우를 위해 임계값에 기반한 다중 분류 방법을 사용하였다. 구글 플레이 앱스토어의 실제 데이터를 사용한 실험 결과 본 시스템은 95%까지의 정확도를 보임을 확인하였다.

Deep Neural Network 언어모델을 위한 Continuous Word Vector 기반의 입력 차원 감소 (Input Dimension Reduction based on Continuous Word Vector for Deep Neural Network Language Model)

  • 김광호;이동현;임민규;김지환
    • 말소리와 음성과학
    • /
    • 제7권4호
    • /
    • pp.3-8
    • /
    • 2015
  • In this paper, we investigate an input dimension reduction method using continuous word vector in deep neural network language model. In the proposed method, continuous word vectors were generated by using Google's Word2Vec from a large training corpus to satisfy distributional hypothesis. 1-of-${\left|V\right|}$ coding discrete word vectors were replaced with their corresponding continuous word vectors. In our implementation, the input dimension was successfully reduced from 20,000 to 600 when a tri-gram language model is used with a vocabulary of 20,000 words. The total amount of time in training was reduced from 30 days to 14 days for Wall Street Journal training corpus (corpus length: 37M words).

Doc2Vec 모형에 기반한 자기소개서 분류 모형 구축 및 실험 (Self Introduction Essay Classification Using Doc2Vec for Efficient Job Matching)

  • 김영수;문현실;김재경
    • 한국IT서비스학회지
    • /
    • 제19권1호
    • /
    • pp.103-112
    • /
    • 2020
  • Job seekers are making various efforts to find a good company and companies attempt to recruit good people. Job search activities through self-introduction essay are nowadays one of the most active processes. Companies spend time and cost to reviewing all of the numerous self-introduction essays of job seekers. Job seekers are also worried about the possibility of acceptance of their self-introduction essays by companies. This research builds a classification model and conducted an experiments to classify self-introduction essays into pass or fail using deep learning and decision tree techniques. Real world data were classified using stratified sampling to alleviate the data imbalance problem between passed self-introduction essays and failed essays. Documents were embedded using Doc2Vec method developed from existing Word2Vec, and they were classified using logistic regression analysis. The decision tree model was chosen as a benchmark model, and K-fold cross-validation was conducted for the performance evaluation. As a result of several experiments, the area under curve (AUC) value of PV-DM results better than that of other models of Doc2Vec, i.e., PV-DBOW and Concatenate. Furthmore PV-DM classifies passed essays as well as failed essays, while PV_DBOW can not classify passed essays even though it classifies well failed essays. In addition, the classification performance of the logistic regression model embedded using the PV-DM model is better than the decision tree-based classification model. The implication of the experimental results is that company can reduce the cost of recruiting good d job seekers. In addition, our suggested model can help job candidates for pre-evaluating their self-introduction essays.

혼합 임베딩을 통한 전문 용어 의미 학습 방안 (A Method for Learning the Specialized Meaning of Terminology through Mixed Word Embedding)

  • 김병태;김남규
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제30권2호
    • /
    • pp.57-78
    • /
    • 2021
  • Purpose In this study, first, we try to make embedding results that reflect the characteristics of both professional and general documents. In addition, when disparate documents are put together as learning materials for natural language processing, we try to propose a method that can measure the degree of reflection of the characteristics of individual domains in a quantitative way. Approach For this study, the Korean Supreme Court Precedent documents and Korean Wikipedia are selected as specialized documents and general documents respectively. After extracting the most similar word pairs and similarities of unique words observed only in the specialized documents, we observed how those values were changed in the process of embedding with general documents. Findings According to the measurement methods proposed in this study, it was confirmed that the degree of specificity of specialized documents was relaxed in the process of combining with general documents, and that the degree of dissolution could have a positive correlation with the size of general documents.

한국어에 적합한 단어 임베딩 모델 및 파라미터 튜닝에 관한 연구 (On Word Embedding Models and Parameters Optimized for Korean)

  • 최상혁;설진석;이상구
    • 한국어정보학회:학술대회논문집
    • /
    • 한국어정보학회 2016년도 제28회 한글및한국어정보처리학술대회
    • /
    • pp.252-256
    • /
    • 2016
  • 본 논문에서는 한국어에 최적화된 단어 임베딩을 학습하기 위한 방법을 소개한다. 단어 임베딩이란 각 단어가 분산된 의미를 지니도록 고정된 차원의 벡터공간에 대응 시키는 방법으로, 기계번역, 개체명 인식 등 많은 자연어처리 분야에서 활용되고 있다. 본 논문에서는 한국어에 대해 최적의 성능을 낼 수 있는 학습용 말뭉치와 임베딩 모델 및 적합한 하이퍼 파라미터를 실험적으로 찾고 그 결과를 분석한다.

  • PDF

Empirical Comparison of Word Similarity Measures Based on Co-Occurrence, Context, and a Vector Space Model

  • Kadowaki, Natsuki;Kishida, Kazuaki
    • Journal of Information Science Theory and Practice
    • /
    • 제8권2호
    • /
    • pp.6-17
    • /
    • 2020
  • Word similarity is often measured to enhance system performance in the information retrieval field and other related areas. This paper reports on an experimental comparison of values for word similarity measures that were computed based on 50 intentionally selected words from a Reuters corpus. There were three targets, including (1) co-occurrence-based similarity measures (for which a co-occurrence frequency is counted as the number of documents or sentences), (2) context-based distributional similarity measures obtained from a latent Dirichlet allocation (LDA), nonnegative matrix factorization (NMF), and Word2Vec algorithm, and (3) similarity measures computed from the tf-idf weights of each word according to a vector space model (VSM). Here, a Pearson correlation coefficient for a pair of VSM-based similarity measures and co-occurrence-based similarity measures according to the number of documents was highest. Group-average agglomerative hierarchical clustering was also applied to similarity matrices computed by individual measures. An evaluation of the cluster sets according to an answer set revealed that VSM- and LDA-based similarity measures performed best.

빅데이터 활용 의학·바이오 부문 사업화 가능 기술 연구 (Research on the development of demand for medical and bio technology using big data)

  • 이봉문;남가영;강병철;김치용
    • 한국멀티미디어학회논문지
    • /
    • 제25권2호
    • /
    • pp.345-352
    • /
    • 2022
  • Conducting AI-based fusion business due to the increment of ICT fusion medical device has been expanded. In addition, AI-based medical devices help change existing medical system on treatment into the paradigm of customized treatment such as preliminary diagnosis and prevention. It will be generally promoted to the change of medical device industry. Although the current demand forecasting of medical biotechnology commercialization is based on the method of Delphi and AHP, there is a problem that it is difficult to have a generalization due to fluctuation results according to a pool of participants. Therefore, the purpose of the paper is to predict demand forecasting for identifying promising technology based on building up big data in medical biotechnology. The development method is to employ candidate technologies of keywords extracted from SCOPUS and to use word2vec for drawing analysis indicator, technological distance similarity, and recommended technological similarity of top-level items in order to achieve a reasonable result. In addition, the method builds up academic big data for 5 years (2016-2020) in order to commercialize technology excavation on demand perspective. Lastly, the paper employs global data studies in order to develop domestic and international demand for technology excavation in the medical biotechnology field.