The purpose of this study was to explore the effect of an explicit word instruction for EFL beginning readers and their perception on the learning experience. Data were attained from 16 fourth graders who took English class as a development activity. Data include the results of pre- and post-test of high frequency sight word recognition, oral reading ability, students' survey responses, and teacher observation. The descriptive statistics were obtained for the result of the pre- and post-test. The findings from the student survey and teacher observation were also provided and interpreted to better understand the result of project and students' perception on the learning experience. The followings are the results of this study. The word recognition ability of the students was dramatically improved after the project. The students were satisfied with the overall learning experience perceiving it as helpful and fun learning. They expressed that the explicit word instruction helped their word recognition and reading ability. The results also supported that the confidence of students on their reading ability were heightened. Several suggestions are made for teachers and researchers on the word instruction for young EFL learners who are beginning readers.
수학적 모델링은 일반적으로 수학적인 방법으로 해석되고 이해되어야 하는 실제적인 문제 상황을 해결하기 위해 상황에 대한 적절한 수학적 모델을 구성하여 문제를 해결하는 일련의 과정이라고 할 수 있다. 문장제는 실제적인 측면과 형식적인 측면, 모두를 포함하고 있으므로 수학적 모델링 활동에 이상적인 도구가 될 수 있다. 이에 본 연구는 실세계의 맥락을 고려해야 하는 진정성있는 문장제를 바탕으로 한 수학적 모델링 학습이 문장제 해결 행동, 문장제 해결에서 실생활 경험을 활용하는 능력, 문장제에 대한 신념 등에 미치는 영향을 조사하였다. 연구 결과 문장제에 대한 수학적 모델링 학습은 직접번역 접근(DTA) 대신에 의미기반 접근(MBA)으로 문장제 해결 행동을 이끄는데 효과적이었으며, 문장제를 해결하는데 있어서 실생활 맥락을 고려하는 태도에 긍정적인 영향을 미쳤다. 또한 수학적 모델링 학습은 문장제에 대한 긍정적인 신념을 형성하는데 중요한 역할을 했음을 알 수 있었다. 이와 같은 연구 결과를 바탕으로 초등학교에서 문장제를 어떻게 다루어야 하는지에 대한 시사점을 살펴보았다.
최근 딥러닝 기술의 발전과 함께 추천 시스템의 영역도 다양해졌다. 본 논문은 학습률 향상을 위한 알고리즘을 연구하였으며 Word2Vec 모델의 성능 특징과 비교를 통해 단어에 따른 유의어 결과를 연구하였다. 문제 추천 알고리즘은 Word2Vec 모델의 특징인 텍스트 간 의미 반영 및 유사성 테스트를 통해 표현된 값으로 구현됐다. Word2Vec 의 학습 결과를 통해 텍스트 유사도 값을 이용해 문제 추천을 진행하였으며 유사도가 높은 문제를 추천할 수 있다. 실험 과정에서 정량적인 데이터양으로는 정확성이 낮아지는 결과를 보았으며 데이터 셋의 데이터양이 방대할수록 정확성을 높일 수 있음을 확인하였다.
본 연구는 모바일의 장점이 영어어휘 학습에 새로운 환경을 제공해 줄 수 있을 것으로 보고 초등영어학습자들을 위한 모바일 게임용 영어어휘 학습 목록과 함께 그 적용 방법을 제시하고자 한다. 이를 위해서, 첫째, 영어교육 과정의 초등 필수 어휘목록, 초등 영어교과서 어휘, 그리고 초등 영어단어집으로부터 초등학교 5, 6학년 학습자들의 어휘학습에 적합한 기본 어휘목록을 선정하였다. 둘째, 기존에 상용화 중인 모바일 게임을 분석하여 영어어휘 학습용 게임으로 적합한 것을 선정하였다. 마지막으로, 선정된 게임에 구축된 어휘목록을 적용해 개발하였다.
본 논문은 한국어 어휘에 대한 풍부한 정보를 담고 있는 한국어사전과 사용자 어휘지능망(User-Word Intelligent Network: U-WIN)등의 언어자원을 이용한 자동 문제 생성 기술을 소개하고, 이 기술을 이용한 한국어 어휘학습시스템을 제시한다. 대부분의 학습시스템에서 사용하는 문제 은행식 출제 방식의 문제점을 해소하기 위하여, 자동 문제 생성을 위한 한국어 어휘 문제의 유형을 8가지로 분류하고, 각 문제 유형별 자동 문제 생성 패턴을 구축하였다. 이러한 자동 문제 생성 패턴에 따라 언어자원이 가지고 있는 한국어 어휘의 형태적 정보와 의미적 정보를 이용하여 어휘 문제를 자동으로 출제하는 한국어 어휘학습 시스템을 구현하였다.
Text classification has been studied for a long time in the Natural Language Processing field. In this paper, we propose an article- and paragraph-level genre classification system using Word2Vec-based LSTM, GRU, and CNN models for large-scale English corpora. Both article- and paragraph-level classification performed best in accuracy with LSTM, which was followed by GRU and CNN in accuracy performance. Thus, it is to be confirmed that in evaluating the classification performance of LSTM, GRU, and CNN, the word sequential information for articles is better than the word feature extraction for paragraphs when the pre-trained Word2Vec-based word embeddings are used in both deep learning-based article- and paragraph-level classification tasks.
딥러닝에서 자연어 처리를 위한 텍스트 분석 기법은 워드 임베딩을 통해 단어를 벡터 형태로 표현한다. 본 논문에서는 워드 임베딩 기법과 딥러닝 기법을 이용하여 SMS 문자 메시지를 문서 벡터로 구성하고 이를 스팸 문자 메시지와 정상적인 문자 메시지로 분류하는 방법을 제안하였다. 유사한 문맥을 가진 단어들은 벡터 공간에서 인접한 벡터 공간에 표현되도록 하기 위해 전처리 과정으로 자동 띄어쓰기를 적용하고 스팸 문자 메시지로 차단되는 것을 피하기 위한 목적으로 음절의 자모를 특수기호로 왜곡하여 맞춤법이 파괴된 상태로 단어 벡터와 문장 벡터를 생성하였다. 또한 문장 벡터 생성 시 CBOW와 skip gram이라는 두 가지 워드 임베딩 알고리즘을 적용하여 문장 벡터를 표현하였으며, 딥러닝을 이용한 스팸 문자 메시지 필터링의 성능 평가를 위해 SVM Light와 정확도를 비교 측정하였다.
Vehicle license plate recognition system is not generalized in Malaysia due to the loose character layout rule and the varying number of characters as well as the mixed capital English characters and italic English words. Because the italic English word is hard to segmentation, a separate method is required to recognize in Malaysian license plate. In this paper, we propose a mixed character level and word level English license plate recognition algorithm using deep learning neural networks. The difference of Gaussian method is used to segment character and word by generating a black and white image with emphasized character strokes and separated touching characters. The proposed deep learning neural networks are implemented on the LPR system at the gate of a building in Kuala-Lumpur for the collection of database and the evaluation of algorithm performance. The evaluation results show that the proposed Malaysian English LPR can be used in commercial market with 98.01% accuracy.
교육 현장에서 감정은 기억, 학습 성취, 동기부여에 있어 핵심적으로 중요한 요인으로 알려져 있다. 본 연구에서는 초등학교 아동들을 대상으로 감정적 개입(emotional engagement)을 촉진하기 위해 기능성 게임을 학습 현장에서 활용할 수 있는지를 확인해보고자 하였다. 이를 위해 영어 학습용 기능성 게임 '워드 콜렉트리안'을 이용하여 탐색 연구를 진행하였다. 워드 콜렉트리안은 인터액션을 통한 단어의 동적 시각화와 맥락 영상의 제시를 통한 상황 인지, 완성된 단어의 배치를 통한 단어에 대한 애착 고취 등을 활용하여 아동들이 감정적으로 영단어 학습에 효과적으로 개입할 수 있도록 설계하였다. 1차 프로토타입을 활용한 기초 실험 결과 워드 콜렉트리안이 학습 효과와 감정 개입의 효과를 모두 불러일으킬 수 있는 가능성이 있음을 확인할 수 있었다.
본 연구는 자연어 처리 문제 중 하나인 문장 유사도 판별 문제를 딥러닝으로 해결하는 데에 있어 Char2Vec기반으로 문장을 전 처리하고 학습시켜 그 성능을 확인하고 대표적인 Word Embedding 모델 Word2Vec를 대체할 수 있는 가능성이 있는지 파악하고자 한다. 임의의 두 문장을 비교할 때 쓰는 딥러닝 구조로 Siamese Ma-STM 네트워크를 사용하였다. Word2Vec와 Char2Vec를 각각 기반으로 한 문장 유사도 판별 모델을 학습시키고 그 결과를 분석하였다. 실험 결과 Char2Vec를 기반으로 학습시킨 모델이 validation accuracy 75.1%을 보였고 Word2Vec를 기반으로 학습시킨 모델은 validation accuracy 71.6%를 보였다. 따라서 고 사양을 요구하는 Word2Vec대신 임베딩 레이어를 활용한 Char2Vec 기반의 전처리 모델을 활용함으로 분석 환경을 최적화 할 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.