• Title/Summary/Keyword: word co-occurrence

Search Result 104, Processing Time 0.027 seconds

Topic-Network based Topic Shift Detection on Twitter (트위터 데이터를 이용한 네트워크 기반 토픽 변화 추적 연구)

  • Jin, Seol A;Heo, Go Eun;Jeong, Yoo Kyung;Song, Min
    • Journal of the Korean Society for information Management
    • /
    • v.30 no.1
    • /
    • pp.285-302
    • /
    • 2013
  • This study identified topic shifts and patterns over time by analyzing an enormous amount of Twitter data whose characteristics are high accessibility and briefness. First, we extracted keywords for a certain product and used them for representing the topic network allows for intuitive understanding of keywords associated with topics by nodes and edges by co-word analysis. We conducted temporal analysis of term co-occurrence as well as topic modeling to examine the results of network analysis. In addition, the results of comparing topic shifts on Twitter with the corresponding retrieval results from newspapers confirm that Twitter makes immediate responses to news media and spreads the negative issues out quickly. Our findings may suggest that companies utilize the proposed technique to identify public's negative opinions as quickly as possible and to apply for the timely decision making and effective responses to their customers.

Extracting Alternative Word Candidates for Patent Information Search (특허 정보 검색을 위한 대체어 후보 추출 방법)

  • Baik, Jong-Bum;Kim, Seong-Min;Lee, Soo-Won
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.4
    • /
    • pp.299-303
    • /
    • 2009
  • Patent information search is used for checking existence of earlier works. In patent information search, there are many reasons that fails to get appropriate information. This research proposes a method extracting alternative word candidates in order to minimize search failure due to keyword mismatch. Assuming that two words have similar meaning if they have similar co-occurrence words, the proposed method uses the concept of concentration, association word set, cosine similarity between association word sets and a ranking modification technique. Performance of the proposed method is evaluated using a manually extracted alternative word candidate list. Evaluation results show that the proposed method outperforms the document vector space model in recall.

Dimension-Reduced Model for Word Co-occurrence Probability Estimation (단어 공기 확률 추정을 위한 차원 축소 모델)

  • 김길연;최기선
    • Proceedings of the Korean Society for Cognitive Science Conference
    • /
    • 2000.05a
    • /
    • pp.137-142
    • /
    • 2000
  • 본 논문에서는 확률적 자연언어 처리에서 중요한 문제인 자료 희귀(data sparseness)의 어려움을 해결하는 새로운 방법으로 차원 축소 모델을 제시한다. 세 가지의 세부 방법이 제안되었으며 Katz의 back-off 방법의 성능을 최저로 했을 때에 비해 약 60%정도의 성능이 향상되었다. 현재까지 최고의 성능을 보이고 있는 유사도 기반의 방법에 비해서도 약 5∼20%의 성능이 향상되었다. 따라서 차원 축소 모델은 확률 추정의 새로운 방법으로 쓰일 수 있다.

  • PDF

Measurement of Document Similarity using Word and Word-Pair Frequencies (단어 및 단어쌍 별 빈도수를 이용한 문서간 유사도 측정)

  • 김혜숙;박상철;김수형
    • Proceedings of the IEEK Conference
    • /
    • 2003.07d
    • /
    • pp.1311-1314
    • /
    • 2003
  • In this paper, we propose a method to measure document similarity. First, we have exploited single-term method that extracts nouns by using a lexical analyzer as a preprocessing step to match one index to one noun. In spite of irrelevance between documents, possibility of increasing document similarity is high with this method. For this reason, a term-phrase method has been reported. This method constructs co-occurrence between two words as an index to measure document similarity. In this paper, we tried another method that combine these two methods to compensate the problems in these two methods. Six types of features are extracted from two input documents, and they are fed into a neural network to calculate the final value of document similarity. Reliability of our method has been proved by an experiment of document retrieval.

  • PDF

Analysis of Laughter Therapy Trend Using Text Network Analysis and Topic Modeling

  • LEE, Do-Young
    • Journal of Wellbeing Management and Applied Psychology
    • /
    • v.5 no.4
    • /
    • pp.33-37
    • /
    • 2022
  • Purpose: This study aims to understand the trend and central concept of domestic researches on laughter therapy. For the analysis, this study used total 72 theses verified by inputting the keyword 'laughter therapy' from 2007 to 2021. Research design, data and methodology: This study performed the development and analysis of keyword co-occurrence network, analyzed the types of researches through topic modeling, and verified the visualized word cloud and sociogram. The keyword data that was cleaned through preprocessing, was analyzed in the method of centrality analysis and topic modeling through the 1-mode matrix conversion process by using the NetMiner (version 4.4) Program. Results: The keywords that most appeared for last 14 years were laughter therapy, depression, the elderly, and stress. The five topics analyzed in thesis data from 2007 to 2021 were therapy, cognitive behavior, quality of life, stress, and the elderly. Conclusions: This study understood the flow and trend of research topics of domestic laughter therapy for last 14 years, and there should be continuous researches on laughter therapy, which reflects the flow of time in the future.

Text Mining Driven Content Analysis of Social Perception on Schizophrenia Before and After the Revision of the Terminology (조현병과 정신분열병에 대한 뉴스 프레임 분석을 통해 본 사회적 인식의 변화)

  • Kim, Hyunji;Park, Seojeong;Song, Chaemin;Song, Min
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.53 no.4
    • /
    • pp.285-307
    • /
    • 2019
  • In 2011, the Korean Medical Association revised the name of schizophrenia to remove the social stigma for the sick. Although it has been about nine years since the revision of the terminology, no studies have quantitatively analyzed how much social awareness has changed. Thus, this study investigates the changes in social awareness of schizophrenia caused by the revision of the disease name by analyzing Naver news articles related to the disease. For text analysis, LDA topic modeling, TF-IDF, word co-occurrence, and sentiment analysis techniques were used. The results showed that social awareness of the disease was more negative after the revision of the terminology. In addition, social awareness of the former term among two terms used after the revision was more negative. In other words, the revision of the disease did not resolve the stigma.

Analysis of Mission, Vision and Core values in Korean Tertiary General Hospitals Through Text Mining (텍스트 마이닝을 통한 상급종합병원의 미션, 비전, 핵심가치 분석 연구)

  • Ji-Hoon Lee
    • Korea Journal of Hospital Management
    • /
    • v.28 no.2
    • /
    • pp.32-43
    • /
    • 2023
  • Purposes: This research is conducted to identify main features and trends of mission, vision and core values in Korean tertiary general hospitals by using text-mining. Methodology: For the study, 45 mission, 112 vision and 190 core values are collected from 45 tertiary general hospitals' homepages in 2022 and use word frequency analysis and Leyword co-occurrence analysis. Findings: In the tertiary general hospitals' mission, there are high frequency words such as 'health', 'humanity', 'medical treatment', 'education', 'research', 'happiness', 'love', 'best', 'spirit', and mission mainly includes the content of contributing humanity's health and happiness with these words. In case of vision, high frequency words are 'hospital', 'medical treatment', 'research', 'lead', 'trust', 'centered', 'patient', 'best', 'future'. By using these words in vision, it represents the definition and characteristics of vision such as ideal organizations in the future, goals and targets. As a result of the Leyword co-occurrence analysis, vision includes the content of 'high-tech medical treatment', 'special care for patients', 'leading education and research', 'the highest trust with customer', 'creative talents training'. -astly, the high frequency word-pairs in core values are 'social distribution', 'innovation pursuit', 'cooperation and harmony', and it defines standards of behavior for organizations. Practical Implication: To correct the problems of vision, mission and core values from findings, firstly, it needs for Korean tertiary general hospitals to use the words that can explain organization's identity and differentiate others in their mission. Secondly, considering strengthening the role of hospitals in their community and the importance of members in organizations, it is necessary to establish vision with considering community and members to activate vision effectively. Thirdly, because there are no specific guidelines of establishing mission, vision and core values for healthcare organizations, this research concepts and results could be utilized when other organizations establish mission, vision and core values.

  • PDF

A Dependency Graph-Based Keyphrase Extraction Method Using Anti-patterns

  • Batsuren, Khuyagbaatar;Batbaatar, Erdenebileg;Munkhdalai, Tsendsuren;Li, Meijing;Namsrai, Oyun-Erdene;Ryu, Keun Ho
    • Journal of Information Processing Systems
    • /
    • v.14 no.5
    • /
    • pp.1254-1271
    • /
    • 2018
  • Keyphrase extraction is one of fundamental natural language processing (NLP) tools to improve many text-mining applications such as document summarization and clustering. In this paper, we propose to use two novel techniques on the top of the state-of-the-art keyphrase extraction methods. First is the anti-patterns that aim to recognize non-keyphrase candidates. The state-of-the-art methods often used the rich feature set to identify keyphrases while those rich feature set cover only some of all keyphrases because keyphrases share very few similar patterns and stylistic features while non-keyphrase candidates often share many similar patterns and stylistic features. Second one is to use the dependency graph instead of the word co-occurrence graph that could not connect two words that are syntactically related and placed far from each other in a sentence while the dependency graph can do so. In experiments, we have compared the performances with different settings of the graphs (co-occurrence and dependency), and with the existing method results. Finally, we discovered that the combination method of dependency graph and anti-patterns outperform the state-of-the-art performances.

Exploring the Research Topic Networks in the Technology Management Field Using Association Rule-based Co-word Analysis (연관규칙 기반 동시출현단어 분석을 활용한 기술경영 연구 주제 네트워크 분석)

  • Jeon, Ikjin;Lee, Hakyeon
    • Journal of Technology Innovation
    • /
    • v.24 no.4
    • /
    • pp.101-126
    • /
    • 2016
  • This paper identifies core research topics and their relationships by deriving the research topic networks in the technology management field using co-word analysis. Contrary to the conventional approach in which undirected networks are constructed based on normalized co-occurrence frequency, this study analyzes directed networks of keywords by employing the confidence index of association rule mining for pairs of keywords. Author keywords included in 2,456 articles published in nine international journals of technology management in 2011~2014 are extracted and categorized into three types: THEME, METHOD, and FIELD. One-mode networks for each type of keywords are constructed to identify core research keywords and their interrelationships with each type. We then derive the two-mode networks composed of different two types of keywords, THEME-METHOD and THEME-FIELD, to explore which methods or fields are frequently employed or studied for each theme. The findings of this study are expected to be fruitfully referred for researchers in the field of technology management to grasp research trends and set the future research directions.

Automatic Construction of Alternative Word Candidates to Improve Patent Information Search Quality (특허 정보 검색 품질 향상을 위한 대체어 후보 자동 생성 방법)

  • Baik, Jong-Bum;Kim, Seong-Min;Lee, Soo-Won
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.10
    • /
    • pp.861-873
    • /
    • 2009
  • There are many reasons that fail to get appropriate information in information retrieval. Allomorph is one of the reasons for search failure due to keyword mismatch. This research proposes a method to construct alternative word candidates automatically in order to minimize search failure due to keyword mismatch. Assuming that two words have similar meaning if they have similar co-occurrence words, the proposed method uses the concept of concentration, association word set, cosine similarity between association word sets and a filtering technique using confidence. Performance of the proposed method is evaluated using a manually extracted alternative list. Evaluation results show that the proposed method outperforms the context window overlapping in precision and recall.