인터넷의 발달과 스마트폰의 보급으로 인하여 그에 따른 소셜 미디어 문화가 형성됨에 따라 PC통신부터 지금까지 소셜 미디어 신조어가 그 문화로 자리 잡아가고 있다. 소셜 미디어의 등장과 사람들의 가교역할을 해주는 스마트폰의 보급화로 신조어가 생기고 빈번하게 사용되고 있는 추세이다. 신조어의 사용은 다양한 문자 제한 메신저의 문제점을 해결하고 짧은 문장을 사용하여 데이터를 줄이는 등 많은 장점을 가지고 있다. 그러나 신조어에는 사전적인 의미가 없으므로 데이터 마이닝 기술이나 빅데이터와 같은 연구에서 사용되는 알고리즘의 성능 저하와 연구에 제약사항이 발생한다. 따라서 본 논문에서는 웹 크롤링을 통해 텍스트 데이터를 추출하고, 텍스트 마이닝과 오피니언 마이닝을 통해 의미부여 및 단어들에 대한 감정적 분류를 통한 문장의 오피니언 파악을 진행하고자 한다. 실험은 다음과 같이 3단계로 진행하였다. 첫째, 소셜 미디어에서 새로운 단어를 수집하여 수집된 단어는 긍정적이고 부정적인 학습을 받게 하였다. 둘째, 표준 문서를 사용하여 감정적 가치를 도출하고 검증하기 위해 TF-IDF를 사용하여 데이터의 감정적 가치를 측정하기 위해 명사 빈도수를 측정한다. 신조어와 마찬가지로 분류된 감정적 가치가 적용되어 감정이 표준 언어 문서로 분류되는지 확인하였다. 마지막으로, 새로 합성된 단어와 표준 감정적 가치의 조합을 사용하여 장비 기술의 비교분석을 수행하였다.
본 연구는 LDA 토픽 모델과 딥 러닝을 적용한 단어 임베딩 기반의 Doc2Vec 기법을 활용하여 자질을 선정하고 자질집합의 크기와 종류 및 분류 알고리즘에 따른 분류 성능의 차이를 평가하였다. 또한 자질집합의 적절한 크기를 확인하고 문헌의 위치에 따라 종류를 다르게 구성하여 분류에 이용할 때 높은 성능을 나타내는 자질집합이 무엇인지 확인하였다. 마지막으로 딥 러닝을 활용한 실험에서는 학습 횟수와 문맥 추론 정보의 유무에 따른 분류 성능을 비교하였다. 실험문헌집단은 PMC에서 제공하는 생의학 학술문헌을 수집하고 질병 범주 체계에 따라 구분하여 Disease-35083을 구축하였다. 연구를 통하여 가장 높은 성능을 나타낸 자질집합의 종류와 크기를 확인하고 학습 시간에 효율성을 나타냄으로써 자질로의 확장 가능성을 가지는 자질집합을 제시하였다. 또한 딥 러닝과 기존 방법 간의 차이점을 비교하고 분류 환경에 따라 적합한 방법을 제안하였다.
본 논문에서 청소년들의 정신 건강을 해치는 유해 정보 사이트를 차단하기 위해 기존 방식이 아닌 내용 기반을 중심으로 하여 중요도가 가장 높은 한 개의 복합 키워드와 정보통신윤리 위원회에서 제시한 유해단어의 가중치를 이용하여 가중치 평균을 더해 유해도를 판단하여 유해 사이트와 일반 사이트를 구별하는 시스템을 구현하였다. 예비 실험을 통해 구해진 유해도의 값 3.5를 유해정보 사이트를 판단하는 기준으로 정한 다음 유해 정보 차단 시스템의 성능 실험을 위해 유해 정보 사이트와 일반 사이트를 각각 무작위로 100개씩 추출해 접속해 본 결과 유해 사이트를 유해 정보 사이트로 판명한 비율이 78%를 보였고 일반 사이트를 일반 사이트로 판명한 비율이 96%가 되어 본 시스템의 유효성을 확인 할 수가 있었다.
본 연구는 목적 지향 대화 시스템 내에서 단일 한국어 텍스트 형식의 질문으로부터 질의자의 의도를 파악하는 것을 목적으로 한다. 목적 지향 대화 시스템은 텍스트 또는 음성을 통한 사용자의 특수한 요구를 만족시켜주는 대화 시스템을 의미한다. 의도 분석 과정은 답변 생성에 앞서 사용자의 질의 의도를 파악하는 단계로, 목적 지향 대화 시스템 전체의 성능에 큰 영향을 준다. 생활화학제품이라는 특정 분야에 제안 모델을 사용하였고, 해당 분야와 관련된 한국어 텍스트 데이터를 이용하였다. 특정 분야에 독립적이며 범용적인 의도를 의미하는 화행과, 특정 분야에 종속적인 의도를 의미하는 개념열로 나누어 분석한다. 화행과 개념열을 분석하기 위하여 단어 임베딩 모델, 합성곱 신경망을 이용한 분류 방법을 제안한다. 단어 임베딩 모델을 통하여 단어의 의미정보를 추상화하고, 추상화된 단어의 의미정보를 기반으로 합성곱 신경망을 통하여 개념열 및 화행 분류를 수행한다.
최근 정보기술의 발달과 함께 부동산 시장에도 급속한 변화가 일어나고 있다. 프롭테크는 인공지능, 센싱기술, 빅데이터 등 다양한 정보기술의 적용으로 촉진되는 부동산 거래혁신으로 정의된다. 본 연구의 목적은 프롭테크 비즈니스에서 어떤 가치가 창출되고 공유되는지에 대한 이해를 바탕으로 조직의 전략 및 비즈니스개발에 도움을 주는 프롭테크 비즈니스 가치창출 프레임워크를 제시하는 것이다. 연구의 결과에서는 인지된 가치 활동을 바탕으로 프롭테크 비즈니스 분류 매트릭스를 구분하고 이 매트릭스를 중심으로 프롭테크 비즈니스의 주요 가치를 무형화, 관계화, 고도화가치로 도출하고, 프롭테크 비즈니스 유형별로 이들 가치가 구현되는 사례를 제시하였다.
Kim, Byoung-Don;Kim, Jin-Young;Na, Seung-You;Choi, Seung-Ho
음성과학
/
제12권1호
/
pp.123-134
/
2005
Confidence measure (CM) is used for the rejection of mis-recognized words in an automatic speech recognition (ASR) system. Rahim, Lee, Juang and Cho's confidence measure (RLJC-CM) is one of the widely-used CMs [1]. The RLJC-CM is calculated by averaging phone-level CMs. An extension of the RLJC-CM was achieved by Kim et al [2]. They devised the normalized CM (NCM), which is a statistically normalized version of the RLJC-CM by using the tri-phone based CM normalization. In this paper we verify the NCM by generalizing tri-phone to n-phone unit. To apply various units for the normalization, mono-phone, tri-phone, quin-phone and $\infty$-phone are tested. By the experiments in the domain of the isolated word recognition we show that tri-phone based normalization is sufficient enough to enhance the rejection performance of the ASR system. Also we explain the NCM in regard to two class pattern classification problems.
International Journal of Fuzzy Logic and Intelligent Systems
/
제14권1호
/
pp.1-7
/
2014
This paper presents a novel method for simultaneously and automatically choosing the nonlinear structures of regressors or discriminant functions, as well as the number of terms to include in a rule-based regression model or pattern classifier. Variables are first partitioned into subsets each of which has a linguistic term (called a causal condition) associated with it; fuzzy sets are used to model the terms. Candidate interconnections (causal combinations) of either a term or its complement are formed, where the connecting word is AND which is modeled using the minimum operation. The data establishes which of the candidate causal combinations survive. A novel theoretical result leads to an exponential speedup in establishing this.
Nowadays, there are a lot of Korean documents, which often need to be identified in one of printed or handwritten text. Early methods for the identification use structural features, which can be simple and easy to apply to text of a specific font, but its performance depends on the font type and characteristics of the text. Recently, the bag-of-words model has been used for the identification, which can be invariant to changes in font size, distortions or modifications to the text. The method based on bag-of-words model includes three steps: word segmentation using connected component grouping, feature extraction, and finally classification using SVM(Support Vector Machine). In this paper, bag-of-words model based method is proposed using SURF(Speeded Up Robust Feature) for the identification of machine printed and handwritten text in Korean documents. The experiment shows that the proposed method outperforms methods based on structural features.
In recent years, artificial intelligence (AI) services have become one of the most essential parts to extend human capabilities in various fields such as face recognition for security, weather prediction, and so on. Various learning algorithms for existing AI services are utilized, such as classification, regression, and deep learning, to increase accuracy and efficiency for humans. Nonetheless, these services face many challenges such as fake news spread on social media, stock selection, and volatility delay in stock prediction systems and inaccurate movie-based recommendation systems. In this paper, various algorithms are presented to mitigate these issues in different systems and services. Convolutional neural network algorithms are used for detecting fake news in Korean language with a Word-Embedded model. It is based on k-clique and data mining and increased accuracy in personalized recommendation-based services stock selection and volatility delay in stock prediction. Other algorithms like multi-level fusion processing address problems of lack of real-time database.
2021년에는 코로나의 여파로 랜섬웨어를 활용한 공격이 유행했으며 그 수는 매년 급증하고 있다. 그 중 파워쉘은 랜섬웨어에 주요 기술로 사용되고 있어 파워쉘 기반 악성코드 탐지 기법의 필요성은 증가하고 있으나 기존의 탐지기법은 난독화가 적용된 스크립트를 탐지하지 못하거나 역난독화에 시간이 오래 소요되는 한계가 존재한다. 이에 본 논문에서는 간단하고 빠른 역난독화 처리과정, Word2Vec과 CNN(Convolutional Neural Network)으로 구성되어 스크립트의 의미를 학습하고 특징을 추출해 악성 여부를 판단할 수 있는 딥러닝 기반의 분류 모델을 제안한다. 2021 사이버보안 AI/빅데이터 활용 경진대회의 AI 기반 파워쉘 악성 스크립트 탐지 트랙에서 제공된 1400개의 악성코드와 8600개의 정상 스크립트를 이용하여 제안한 모델을 테스트한 결과 기존보다 5.04배 빠른 역난독화 실행시간, 100%의 역난독화 성공률, 0.01의 FPR(False Positve Rate), 0.965의 TPR(True Positive Rate)로 악성코드를 빠르고 효과적으로 탐지함을 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.