• Title/Summary/Keyword: woody debris

Search Result 38, Processing Time 0.042 seconds

Characteristics of Channelbed and Woody Debris on Mountainous Stream (산지급류소하천(山地急流小河川)에 있어서 하상미지형(河床微地形)과 유목(流木) 특성(特性))

  • Chun, Kun-Woo;Kim, Min-Sik;Park, Wan-Geun;Ezaki, Tsugio
    • Journal of Korean Society of Forest Science
    • /
    • v.86 no.1
    • /
    • pp.69-79
    • /
    • 1997
  • The purpose of this study is to acquire essential data to reduce the amount of woody debris resulted from the debris flow. This research examined topographic characteristics of the channelbed affecting generation, movement and storage of woody debris and woody characteristics related to number, sizes, shapes, decay, storage direction to mountainous stream. 1. The number of woody debris had a tendency to increase in proportion to stream width, but it was hardly affected by longitudinal gradient of stream. Especially, the greater amount of woody debris was stored at wide section of the stream with compound channel, and it was found in deposits of channelbed rather than in the present channel. 2. Total woody debris over 10cm in diameter and over 2m in length was 402 units and storage number was 35.3 units per 100m of stream. Average diameter of breast height and length were 14cm and 4m, respectively. The woody debris appeared shorter in length and greater in diameter at down-stream than up-stream. 3. Since woody debris met sediments and bed-materials of great roughness in moving, the greater amount of woody debris without root was found in up-stream and down-stream, but deformed woody debris was discovered in upper stream. Decay of woody debris was more severe in down-stream and woody debris on rotting process was found down-stream. 4. Storage direction of woody debris was mainly parallel to center line of stream, and rate of parallel and perpendicularity was 276 and 126 units, respectively. But, as woody debris storing to the perpendicular direction was unstable, the traveling debris could easily be stored. Therefore, some counterplan was required to prevent the traveling woody debris. 5. Tree species of woody debris was mainly larch, which occupied about two third of total woody debris(256 units). The woody debris of larch is easy to move due to hitting of channelbed materials or lower channelbed fluctuation because the lower part of larch is weaker than its upper part. Therefore, the section of the tree species planting in the riparian vegetation needs much more carefulness.

  • PDF

Relationships between Small Mammal Community and Coarse Woody Debris in Forest Ecosystem (산림 생태계에서 소척추동물 군집과 잔목의 관계)

  • Lee, Sang-Don
    • The Korean Journal of Ecology
    • /
    • v.20 no.4
    • /
    • pp.251-258
    • /
    • 1997
  • Few attempts have been made to discover the ecological function of coarse woody debris (CWD) despite its importance to small mammal population. Twenty-five pitfall traps and a hundred live traps were placed in three sites with high amounts of CWD and three sites with low amounts of CWD. Eleven species were caught, and Peromyscus maniculatus was the most abundant (45.6%, n=605). Among 11 speices, abundance of Tamias townsendii and Clethronomys gapperi were higher in sites with high amounts of CWD than in sites with low amounts of CWD. Home range size was larger in breeding season than in non-breeding season indicating mating search. Resident time of Peromyscus maniculatus was longer in sites with high amounts of CWD implying better stability in population. The increasing amount of coarse woody debris (CWD) enhanced the habitat use by small mammals, and animals in high amounts of CWD were more abundant and stable in population fluctuation. This study, therefore, concludes that CWD is a critical habitat element for small mammals in forest ecosystem.

  • PDF

Association between coarse woody debris and small mammals and insectivores in managed forests

  • Lee, Sang-Don
    • Journal of Ecology and Environment
    • /
    • v.35 no.3
    • /
    • pp.189-194
    • /
    • 2012
  • Coarse woody debris (CWD) is generally considered dead woody material in various stages of forest decomposition and has been hypothesized to be an important habitat feature for mammals in forests of the Pacific Northwest, USA. Sherman and pitfall trapping were conducted for 2 years on three paired sites with low and high amounts of CWD. Deer mice was the dominant species with a total capture of 605 (45.6%). Four species of insectivores were captured, including Sorex moncicolus, S. trowbridgii, S. vagrans, and Neurotrichus gibbsii. A Poisson regression model was used to test whether 11 CWD variables could predict insectivore captures. The volume of logs and mean decay were important variables for deer mice use of CWD. Mean distance from pieces of CWD to the capture point was significantly related to the total number of captures of trowbridge shrew (Sorex trowbridgii) and all insectivore species. Vagrant shrews (Sorex vagrans) were significantly associated with log volume. Retaining large size CWD should be part of a management plan for ground-dwelling insectivores in forests to secure their biodiversity.

Ecological responses of natural and planted forests to thinning in southeastern Korea: a chronosequence study

  • Cho, Yong-Chan;Pee, Jung-Hun;Kim, Gyeong-Soon;Koo, Bon-Yoel;Cho, Hyun-Je;Lee, Chang-Seok
    • Journal of Ecology and Environment
    • /
    • v.34 no.4
    • /
    • pp.347-355
    • /
    • 2011
  • Effects of forest thinning on community level properties have not been understood yet in Korea. We investigated regeneration patterns and trajectories after a disturbance by applying a chronosequence approach. Light availability, litter and woody debris cover, and species composition were determined for twenty 50 m line-transect samples representing a disturbance duration gradient (within 11 years). Environmental factors such as light availability and coverage of woody debris and litter changed abruptly after thinning and then returned to the pre-disturbance state. Although species richness was gained at shrub and ground layer in a limited way in both forests, cover of various functional types revealed diversity in their responses. Notably, Alnus firma stands exhibited a larger increment of cover in woody plants. Ordination analysis revealed different regeneration trajectories between natural and planted stands. Based on ordination analysis, rehabilitated stands showed movement to alternative states compared with natural ones, reflecting lower resilience to perturbation (i.e., lower stability). Our results suggest that community resilience to artificial thinning depends on properties of the dominant species. But to get more explanatory ecological information, longer-term static observations are required.

Comparison of Mass and Nutrient Dynamics of Coarse Woody Debris between Quercus serrata and Q. variabilis Stands in Yangpyeong

  • Kim, RaeHyun;Son, Yowhan;Hwang, Jaehong
    • The Korean Journal of Ecology
    • /
    • v.27 no.2
    • /
    • pp.115-120
    • /
    • 2004
  • Coarse woody debris (CWD, $\ge$ 5 cm in maximum diameter) is an important functional component, especially to nutrient cycling in forest ecosystems. To compare mass and nutrient dynamics of CWD in natural oak forests, a two-year study was conducted at Quercus serrata and Q. variabilis stands in Yangpyeong, Kyonggi Province. Total CWD (snag, stump, log and large branch) and annual decomposition mass (Mg/ha) were 1.9 and 0.4 for the Q. serrata stand and 7.5 and 0.5 for the Q. variabilis stand, respectively. Snags covered 72% of total CWD mass for the Q. variabilis stand and 42% for the Q. serrata stand. Most of CWD was classified into decay class 1 for both stands. CWD N and P concentrations for the Q. variabilis stand significantly increased along decay class and sampling time, except for P concentration in 2002. There were no differences in CWD N concentration for the Q. serrata stand along decay class and sampling time. However, CWD P concentration decreased along sampling time. CWD N and P contents (kg/ha) ranged from 3.5∼4.7 and 0.8∼1.3 for the Q. serrata stand to 22.8∼23.6 and 3.7∼4.7 for the Q. variabilis stand. Nitrogen and P inputs (kg/ha/yr) into mineral soil through the CWD decomposition were 0.7 and 0.3 for the Q. serrata stand and 1.6 and 0.3 for the Q. variabilis stand, respectively. The number of CWD and decay rate were main factors influencing the difference in CWD mass and nutrient dynamics between both stands.

Estimating Wildfire Fuel Load of Coarse Woody Debris using National Forest Inventory Data in South Korea

  • Choi, Suwon;Lee, Jongyeol;Han, Seung Hyun;Kim, Seongjun;Son, Yowhan
    • Journal of Climate Change Research
    • /
    • v.6 no.3
    • /
    • pp.185-191
    • /
    • 2015
  • This study presents an estimate of on-site surface fuel loadings composed of coarse woody debris (CWD) using $5^{th}$ National Forest Inventory (NFI) data in South Korea. We classified CWD data into forest type, region and decay class, and used conversion factors by decay class and tonne of oil equivalent developed in the country. In 2010, the total wildfire fuel load of CWD was estimated as 8.9 million TOE; those of coniferous, deciduous and mixed forests were 3.5 million TOE, 2.8 million TOE and 2.6 million TOE, respectively. Gangwon Province had the highest wildfire fuel load of CWD (2.3 million TOE), whereas Seoul exhibited the lowest wildfire fuel load of CWD (0.02 million TOE). Wildfire fuel loads of CWD were estimated as 2.9 million TOE, 1.9 million TOE, 2.4 million TOE and 1.7 million TOE for decay classes I, II, III and IV, respectively. The total wildfire fuel load of CWD corresponded to the calorific value of 8.2 million tons crude oil, 2.46% of that of living trees. Proportionate to the growing stock, total wildfire fuel load of CWD was in a broad distinction by region, while its TOE $ha^{-1}$ was not. This implies that there is no need to establish different guidelines by region for management of CWD. The results of this work provide a baseline study for scientific policy guidelines on preventing wildfires by proposing CWD as wildfire fuel load.

Assessment of Coarse Woody Debris in Gallery Forest in the Bombo-Lumene Reserve (Democratic Republic of Congo)

  • Rusaati, Butoto Imani wa;Joo, Sung-Hyun;Yun, Gi-Yun;Park, Joowon;Cephas, Masumbuko Ndabaga;Kang, Jun-Won
    • Journal of Forest and Environmental Science
    • /
    • v.35 no.3
    • /
    • pp.205-211
    • /
    • 2019
  • The objective of this research was to assess the amount of carbon stock of coarse woody debris (CWD) in Bombo-Lumene Reserve. Data on lying CWD was collected on 35 circular sampling plots using Line Intersect Sampling (LIS) method. A total of 230 samples CWD (${\geq}10cm$ diameter) were inventoried. The mean carbon stocks of CWD was $29.48Mg\;C\;ha^{-1}$, ranging from 4.32 to $73.54Mg\;C\;ha^{-1}$. The CWD carbon stocks displayed a wide range of variation in decay states. The allocation of CWD among the decay class of all the CWD samples reveals that the most important classes were class 1 and class 3 with 323.66 and $321.96Mg\;C\;ha^{-1}$, followed by class 4 with 264.56 and the last one was class 2 with $121.72Mg\;C\;ha^{-1}$. The results suggested that the dead wood component is important in carbon sequestration and should be taken into consideration for quantification of carbon stocks not only in Bombo-Lumene Reserve, but in all forest ecosystems in the Democratic Republic of Congo.

Relationships between Invertebrate Availability and the Abundance of Three Species of Shrews and the Shrew-mole in Managed Forests (산림 내에서 곤충의 현존도와 식충목 4 종의 풍부도간의 상관 관계)

  • Lee, Sang Don
    • The Korean Journal of Ecology
    • /
    • v.18 no.4
    • /
    • pp.441-449
    • /
    • 1995
  • The abundance of coarse woody debris (CWD) has been hypothesized to increase niche for forest dwelling insectivores, concentration of nutrients, and the diversity of invertebrates. However, no abjective assessment based on replication in the field has yet been done. this study was carried out to test the relationships between invertebrate availability and the abundance of four insectivores (Sorex trowbridgii, S. vagrans, S. monticolus and Neurotrichus gibbsii) in western Washington, USA. Pitfall traps were used to determine abundance and diversity of invertebrates. Abundance of insectivores was not different between habitats except for S. vagrans which was more abundant in habitats with low amounts of CWD than in habitats with high amounts of CWD. Simpson’s diversity index computed for invertebrates did not differ between habitats. There were no significant relationships between the diversity indices of invertebrates and the abundance of shrews. Shrew abundance and the Coleoperan beetles also did not show any significant relationship. The results suggested insectivores might select a wide range of prey items in addition to surface-active invertebrates.

  • PDF

Influences of Termite Activities on Ecosystem Carbon Cycle: Focusing on Coarse Woody Debris Decomposition (흰개미가 생태계 탄소 순환에 미치는 영향: 고사목 분해를 중심으로)

  • Kim, Seongjun;Lee, Jongyeol;Han, Seung Hyun;Chang, Hanna;Lee, Sohye;Yun, Hyeon Min;Son, Yowhan
    • Journal of Korean Society of Forest Science
    • /
    • v.105 no.1
    • /
    • pp.1-11
    • /
    • 2016
  • Globally, there are more than 2600 species of termites which adapted plenty of terrestrial ecosystems by various strategies such as making termite nest and society. Various studies were recently carried out on termites because they play significant roles in the context of carbon (C) cycle of terrestrial ecosystems. According to the results of previous studies, termite activities influenced the amount of soil organic C, methane emission, and organic matter decomposition. Termite nests, where termite biomass was concentrated, exhibited 1.8 times higher soil organic C concentration than reference soils, and emitted $0.0-6.0kg\;ha^{-1}year^{-1}$ of methane in tropical forests and savannas. Feeding activity of termites, in addition, accelerated coarse woody debris (CWD) decomposition by increasing the surface area to volume ratio of CWD. Especially, CWD decomposition induced by the Rhinotermitidae family appeared to be significant for the C cycle in temperate forests. However, more studies should be conducted on termite-induced CWD decomposition in temperate forests because few studies have dealt with it. The termite-induced CWD decomposition could be measured by preparing disc-shaped CWD samples, excluding access of termites to the CWD samples, and comparing the decomposition rate of the CWD samples with and without the termite exclusion treatment. Studies on the termite-induced CWD decomposition would contribute to further elucidation of the C cycle in temperate forests.