• Title/Summary/Keyword: wood-based floor

Search Result 39, Processing Time 0.03 seconds

Impact-Response of Floor Construction Materials (바닥건축재료의 충결하중에 대한 반응)

  • Jang, Sang-Sik
    • Journal of the Korean Wood Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.83-87
    • /
    • 1995
  • Impact-bouncing height of steel balls dropped from 1m height on various floor materials were measured to evaluate impact-bouncing characteristics depending on floor materials and the effect of these properties on walkability and fatigue of humanbody. Stone and tile finished concrete floor showed the highest bouncing height of around 70%, and soil showed the lowest bouncing height of around 3%. The second highest bouncing height was about 40% which corresponded to terazo finished concrete floor and about twice as high as the bouncing height on concrete floor without finishing. The impact-bouncing height could be lowered to 15~20% by using gum tile on concrete floor. Steel showed similar bouncing height to concrete floor, and wood-based materials showed the second lowest bouncing height next to soil. Among wood-based materials, hardwood species having higher specific gravities showed relatively high bouncing height of 8~24%, softwood species having low specific gravities showed relatively lower bouncing height of 5~18%, and wood composites showed bouncing height of 8~18%. Among all the materials used in this study, wood-based floor materials corresponded to the bouncing height of 10~15% which is considered to be best for humanbody. Surface painting on wood-based materials increased the bouncing height, and the number of bouncing of steel balls after dropping from 1m height increased as the bouncing height increased.

  • PDF

Airtightness of Light-Frame Wood Houses built in Daejeon and Chungnam Area

  • Jang, Sang-sik;Ha, Been
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.2
    • /
    • pp.147-158
    • /
    • 2017
  • Among the energy consumption in building, the heating energy takes the largest part. Therefore, it is important to minimize the heat energy loss in building for the reduction of overall energy use in construction. The most important points for the minimization of energy loss in building are insulation and airtightness. Especially, in wood houses, airtightness is very important for energy saving as well as increase of durability. However, the researches on airtightness of wood buildings have been started recently and are very deficient especially in Korea. In this study, air leakage properties and airtightness performance were evaluated for light-frame wood houses built in Daejeon and Chungnam area. Total 7 houses were evaluated, among which four houses (Case 1 to Case 4) were in the construction stage before interior finish and the other three houses (Case 5 to Case 7) were after completion of construction work. The tests for airtightness were conducted by pressurization-depressurization method, and the factors included in the measurements includes air leakage rate at 50 Pa (CMH50), air change rate at 50 Pa (ACH50), equivalent leakage area (EqLA) and EqLA per floor area. As a result of this study, key air leakage points in wood houses were found to be the gaps between floor and wall, the holes for wiring and plumbing, the double glasses windows and the entrance doors. The average value of ACH50 for the houses after completion of construction work was $3.5h^{-1}$ that was similar to Europe standard ($3.0h^{-1}$). ACH50 was proportional to EqLA per floor area but inversely proportional to the internal volume, the net floor area and the area of window.

Study on the Reliability Analysis of Wood Floor System Exposed to Fire (화염에 노출된 목재 마루 시스템의 신뢰성 해석에 관한 연구)

  • Kim, Gwang-Chul;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.66-74
    • /
    • 2004
  • Fire performance is the important criterion for evaluating of safety of wood structures which exposed to the standard fire condition. Endurance time and time-to-failure are used as the criteria for fire performance in many countries. Reliability analysis about wood floor system which exposed to fire was carried out as preliminary research for reliability-based design on fire. Analyses were conducted by two methods, numerical analysis method and deterministic method.. They didn't show the difference between two methods. The reliability of floor exposed to fire showed strong dependence on the coefficient of variation of member and did not be influenced by the strength or load of member.

Studies on Wood-based Composite Panel with Waste Tire - Properties of Composite Boards in Relation to Hot Pressing Conditions - (폐타이어를 이용한 목질계 복합판넬의 연구 - 열압조건에 의한 재질특성 -)

  • Lee, Weon-Hee;Park, Sang-Jin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.29-38
    • /
    • 1997
  • The effect and control of wood property of reconstituted composite panels for improved board properties by wood-waste materials and development of combination method for heterogeneous materials have been of interest to the wood science researchers. The purpose of this study is to consider the properties in relation to hot pressing conditions and to develope the optimum hot pressing condition with waste wood and waste tire for the manufacturing of composite boards. The study of composite boards for recycling of wood and waste tire is nothing up to the present. Physical and mechanical properties such as specific gravity, moisture content, swelling coefficient, modulus of rupture and modulus of elasticity in bending test were studied. The condition of 3-stage press time for the lowest moisture content of composite board was $4{\rightarrow}3{\rightarrow}3$ minutes. Specific gravity of composite panels was affected mainly by the amount of rubber chip. Because of the low rigidity and high elasticity in rubber chip, it is considered the composite panel was adequate material in the place of compression load, but not bending load. Therefore, it was concluded that a use of rubber-based wood composite panel is proper to the interior materials such as floor a room than exterior materials. From the test results, the most optimum hot pressing conditions were $4{\rightarrow}3{\rightarrow}3$ minutes for 3-stage press time and $45{\rightarrow}20{\rightarrow}5kg/cm^2$ for 3-stage press pressure. The rubber-based wood composite panel was very excellent in elasticity by combination of rubber chip in comparison with existing other wood-based materials. Therefore, it was considered that rubber-based wood composites can be applicable to every interior materials such as floor a room and will be expected to effective reuse and recycle of waste tires and wood-waste materials, and will be contribute to protection of environment pollution in earth.

  • PDF

Performance Test and Flue Gas Characteristics of a 350 kW Wood Pellet Boiler (350 kW(300,000 kcal/h)급 우드 펠렛 보일러 운전 특성 및 성능 평가)

  • Kim, Jong-Jin;Kang, Sae-Byul
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.167-171
    • /
    • 2009
  • We conducted performance test of a 350 kW class wood pellet boiler installed at a dormitory whose total area is $1,354\;m^2$. The maximum heating capacity of the boiler is 350 kW(300,000 kcal/kg). The wood pellet boiler consists of 3 parts; boiler, hot water storage tank and wood pellet storage tank. In testing the boiler, we shut off hot water utility supply and open up floor heating water system in order to measure exact value of the heating output of the wood pellet boiler. To determine the efficiency and heating output of the wood pellet boiler, we measured mass flow rate of wood pellet, the lower heating value(LHV) of the wood pellet, mass flow rate and temperature of water for floor heating and so on. We measured the mass flow rate of fuel, wood pellet with respect to rotational speed of auger, wood pellet feeding screw. We also measured the flue gas concentration of the wood pellet boiler by using a gas analyser. The result shows that the efficiency of the wood pellet boiler is 80.6% based on lower heating value at 124 kW of heating output. At this condition, O2 concentration of the flue gas is 6.0%, CO and NOx concentrations are 85 and 102 ppm.

  • PDF

Insulation Saving Effect for Korean Apartment House Using Cross-Laminated Timber (CLT)

  • Pang, Sung-Jun;Lee, Bumjin;Jeong, Gi Young
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.6
    • /
    • pp.846-856
    • /
    • 2017
  • The aim of this study was to develop the details of cross-laminated timber (CLT) envelops for satisfying the design standard for energy saving (DSEA) and passive standard in South Korea. When the same thickness of 180 mm concrete or CLT was used and the same materials for other layers were used for the roof, wall, and interlayer floor, the required insulation thickness for the different building envelopes in central, southern, and Jeju island was evaluated. As a result, compared to the concrete envelop, about 43 mm of insulation thickness was reduced for wall and roof with the CLT envelope. When the CLT envelopes were modified to protect the CLT from moisture based on FPInnovations (2011), the insulation thickness was further reduced by 12 mm. When the modified CLT building envelops satisfied with a passive standard are used for 10-story building, the required insulation was decreased by $40.89m^3$ for a floor ($105.27m^2{\times}2.3m$ in height) compared to concrete building. As the number of floors increases, about 3.58 m3 of insulation per floor was additionally saved.

Performance evaluation of MPCM to apply for radiant floor heating system (바닥난방시스템 적용을 위한 MPCM 성능평가)

  • Jeong, Su-Gwang;Jeon, Ji-Soo;Kim, Su-Min
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.475-479
    • /
    • 2012
  • Thermal energy storage (TES) systems using Microencapsulated phase change material (MPCM) have been recognized as one of the most advanced energy technologies in enhancing the energy efficiency and sustainability of buildings. We examined a way to incorporate MPCMs with building materials through application for wood-based flooring. Wood-based flooring is commonly used for floor finish materials of residential buildings in Korea. However, wood-based flooring has not performed the characteristic of heat storage. This study is aimed at manufacturing high thermal efficiency wood flooring by increasing its heat storage using MPCM. As a result, this study confirmed that MPCM is dispersed well in adhesive through the scanning electron microscopy analysis. From the differential scanning calorimetry analysis, it can be confirmed that this composite has the characteristic of a thermal energy storage material. Also, we analyzed how this composition was formed by physical combination through the Fourier transform infrared analysis. Also, we confirmed the bonding strength of the material by using the universal testing machine.

  • PDF

Effect of Adhesive Type Applying to Surface-Strengthening Wood Floor on Level of Attachment (접착제 종류 따른 표면강화 온돌마루의 부착 특성)

  • Kim, Kyoung-Hoon;Baek, Byung-Hoon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.13-14
    • /
    • 2012
  • This study investigates the effect of adhesive type applying to surface-strengthening Ondol floor on level of attachment. Adhesive materials of four types produced in different companies were prepared and their attaching performance was examined. Test results showed that the water-based epoxy type produced in S company was the most effective on attaching the pieces of the surface-strengthening Ondol floor product.

  • PDF

Thermal Bridge and Heat Transfer Analysis for Each Part in Residential Building According to Construction of Wood-based Finishing Material (목질 마감재 구성에 따른 주거용 건축물 부위별 열교 및 전열성능 분석)

  • Seo, Jungki;Jeong, Su-Gwang;Kim, Sumin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.3
    • /
    • pp.343-359
    • /
    • 2017
  • Many researches and policies have been carried out for saving energy in buildings. However, there are a few studies of thermal characteristics of wood-based materials that have been widely used as structural materials and finishing materials in buildings. In this study, thermal bridging areas were found to investigate thermal performance of residential building using non wood-based materials and wood-based materials. And heat transfer analysis of 16 case studies according to composition of structural materials and finishing materials was conducted. Also in this experiment, Physibel Trisco was used as the heat transfer analysis simulation tool, which conforms to the calculation method of ISO 10211. Analytical modeling was also carried out according to the ISO 10211, and the boundary temperature conditions were set at room temperature $20^{\circ}C$ and outdoor temperature $-11.3^{\circ}C$ (Seoul standard) according to the energy saving design standard in South Korea. Applied structures are classified according to the cases of concrete structure with non wood-based finishing materials, concrete structure with wood-based finishing materials and wood structure. Analyzed building elements were divided into a wall, a roof, an interlayer floor and a bottom floor. As a result, it can be confirmed that the thermal bridge of the concrete structure and wood structure were caused by the geometrical and material causes. In addition, the structural thermal bridge was caused in the discontinuity of the insulation in the concrete structure. Also it was confirmed that the linear heat transfer coefficient of the wall decreases when the wood-based materials are applied to the concrete structure.

Consumer Preferences for Wood-Framed Housing

  • Kwon, Oh-Jung
    • Architectural research
    • /
    • v.2 no.1
    • /
    • pp.17-25
    • /
    • 2000
  • The purpose of this study was; 1) to describe consumer preferences for wood~framed housing; 2) to determine factors which affect the preferences for housing environments in wood-framed housing by demographic, current housing, and wood-framed housing-related characteristics; and 3) to identify differences in preferred wood-framed housing related characteristics by demographic and current housing characteristics. From the visitors to a model wood-framed house in Seoul, Korea, 296 persons willing to live in a wood-framed house were selected as the sample for the study. Data were collected using a self-administered survey and analyzed by frequency distribution, factor analysis, chi-square test, t-test, and one-way analysis of variance procedures. The results of the study Indicated that among seven factors based on 32 housing characteristics, Factor 2 - "floor plan and Interior environment" was the major variable which showed significant difference by selected demographic characteristics. Regarding the differences in wood-framed housing related characteristics by demographic characteristics, age, gender, education, and family life cycle showed group differences. Also, housing type was the major current housing characteristic to provide significant group difference in preferred wood-framed housing characteristics.

  • PDF