• Title/Summary/Keyword: wood burning

Search Result 83, Processing Time 0.021 seconds

A Case Study on Fire Investigation for a Wood-Burning Stove in an Idyllic House (전원주택의 벽난로와 관련된 화재사례의 분석)

  • Lee, Eui-Pyeong
    • Fire Science and Engineering
    • /
    • v.29 no.6
    • /
    • pp.119-128
    • /
    • 2015
  • A fire broke out in a working wood-burning stove and destroyed an idyllic house about two years after it was built. This study analyzed data provided through the court by the fire station, police station, fire insurance investigation agency, house construction company, and wood-burning stove maker Based on the fire pattern of low-temperature long-term ignition that remained in the studs, the fire was found to be caused by the conduction of heat in the fire box to the studs of the wall next to the wood-burning stove. A fire simulation showed that the low-temperature long-term ignition of the studs next to the wood-burning stove occurred because a hole was not made for ventilation in the chimney.

A Study on Estimation of Air Pollutants Emission from Wood Stove and Boiler, Wood-pellet Stove and Boiler (화목난로∙보일러와 펠릿난로∙보일러 사용에 의한 대기오염물질 배출량 산정에 관한 연구)

  • Kim, Dong-Young;Han, Yong-Hee;Choi, Min-Ae;Park, Sung-Kyu;Jang, Young-Kee
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.3
    • /
    • pp.251-260
    • /
    • 2014
  • Biomass burning is one of the significant emission source of PM and CO, but a few studies are reported in Korea. Air pollutants emission from biomass burning such as wood stove and boiler, and wood-pellet stove and boiler were estimated in this study. Activity levels related to biomass burning such as fuel types, amount of fuel loading, and location and temporal variation were investigated by field survey over Korea. Fuel loadings were 14.9 kg/day for wood stove, 31.3 kg/day for wood boiler, 12.8 kg/day for wood-pellet stove, 32.5 kg/day for wood-pellet boiler during the season of active use. These were mostly burned in winter season from october to april of next year. Estimated annual emissions from wood stove & boiler were CO 76,677, $NO_x$ 710, $SO_x$ 70, VOC 20,941, TSP 6,605, PM10 2,921, PM2.5 1,851, and NH3 7 ton/yr, respectively. Emissions from wood-pellet stove and boiler were CO 32,798, $NO_x$ 1,830, $SO_x$ 25, VOCs 5,673, TSP 629, PM10 457, PM2.5 344, and $NH_3$ 2 ton/yr, respectively. When the emission estimates are compared with total emissions of the national emission inventory (CAPSS: Clean Air Policy Support System), Those occupy 12.5%, 2.8% of total national emission for CO and PM10, respectively. These results show wood and wood-pellet burning appliances were one of the major source of air pollution in Korea. In future, these types of heaters need to be regulated to reduce air pollution, especially in suburb area.

Burning Characteristics of Wood-based Materials using Cone Calorimeter and Inclined Panel Tests

  • Park, Joo-Saeng;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.18-25
    • /
    • 2002
  • Research to discuss the fire performance of materials requires tools for measuring their burning characteristics and validated fire growth models to predict fire behavior of the materials under specific tire scenarios using the measured properties as input for the models. In this study, burning characteristics such as time to ignition, weight loss rate, flame spread, heat release rate, total heat evolved, and effective heat of combustion for four types of wood-based materials were evaluated using the cone calorimeter and inclined panel tests. Time to ignition was affected by not only surface condition and specific gravity of the tested materials but also the type and magnitude of heat source. Results of weight loss rate, measured by inclined panel tests, indicated that heat transfer from the contacted flame used as the heat source into the inner part of the specimen was inversely proportional to specific gravity of material. Flame spread was closely related with ignition time at the near part of burning zone. Under constant and severe external heat flux, there was little difference in weight loss rate and total heat evolved between four types of wood-based panels. More applied heat flux caused by longer ignition time induced a higher first peak value of heat release rate. Burning characteristics data measured in this study can be used effectively as input for fire growth models to predict the fire behavior of materials under specific fire scenarios.

A Study on Estimation of Air Pollutants Emission from Residential Wood Stove (주거용 화목난로의 대기오염 배출량 추정에 관한 연구)

  • Kim, Pil-Su;Jang, Young-Kee;Kim, Jeong;Shin, Yong-Il;Kim, Jeong-Soo;An, Jun-Young
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.3
    • /
    • pp.276-285
    • /
    • 2010
  • Recently the Korean government has tried to cut down the $PM_{10}$ concentration by the Special Law for Air Quality Improvement. But the concentrations of $PM_{10}$ have exceeded the air quality standard at most monitoring stations. Primary $PM_{10}$ emitted from various sources and emission data have large uncertainty. The biomass burning is one of the major sources of $PM_{10}$ emission. The biomass burning is composed of wood stove usage, meat cooking and agricultural combustion etc.. Activity data and emission factors for the biomass burning are limited, and it is hard to calculate the air pollution emissions from these sources. In this study, we tried to estimate the air pollution emission from residential wood stove usage. The number of total wood stoves is estimated by the survey of wood stove manufacturer. And air pollution emission factors for the wood stove are investigated using the flue gas measurement by U.S. EPA particulate test method (Method 5G). As the results, the $PM_{10}$ and CO emission factors of wood stove are estimated as 7.7 g/kg-wood and 78.8 g/kg-wood respectively. The annual $PM_{10}$ and CO emissions from wood stove are calculated as 1,200~3,600 ton/year and 12,600~36,400 ton/year in Korea. It is confirmed that wood stove is the one of major sources of biomass burning, and the survey for activity data and the measurement for emission factors are needed for reducing the uncertainty of these emission data.

A Study on Combustion Characteristics of wood pellets (목재 펠릿의 연소특성에 관한 연구)

  • Sim, Bong Seok;Kim, Hyouck Ju;Park, Hwa Choon;Kim, Jong Jin;Choi, Kyu Sung;Kang, Sae Byul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.104.1-104.1
    • /
    • 2010
  • We investigated combustion characteristics of wood pellets in a combustion equipment with adjusting amount of flue gas. Maximum temperature in a combustion chamber was $850^{\circ}C$. Higher heating Value of a domestic wood pellet tested is 19.1 MJ/kg and water content was 8.3%. Amount of flue gas causes big effect on burning characteristics in $450{\sim}600^{\circ}C$. Wood pellet does not burn in low temperature atmosphere less than $450^{\circ}C$ and low flue gas flow rate. We made burning the pellet that is made in Korea, USA, Chile and Canada. Color of foreign pellets are bright brown and they made by mainly sawdust. Korean pellet is a dark brown color because it contains bark. There are some differences in the result of elementary analysis and technical analysis. According to the result of burning experiment, burning times of each countries's pellet are similar.

  • PDF

Simulation of Wood Crib Burning Behaviors by Using FDS (FDS를 이용한 소화모형 화재거동의 시뮬레이션)

  • Kwon, Seong-Pil;Yoon, Hun-Ju;Kim, Hyeong-Gweon;Ra, Yong-Woon;SaKong, Seong-Ho;Shin, Dong-Il
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.76-79
    • /
    • 2008
  • In this work wood crib burning behaviors have been simulated by using the FDS(Fire Dynamic Simulator) program. Wood cribs are regularly stacked arrays of wood sticks, and available for the performance rating of fire-extinguishers. On the basis of an angle iron supporter 26 layers of wood sticks have been stacked up. Each layer consists of 5 or 6 wood sticks which are placed in parallel, with a constant distance, and in alternating rows. They are laid between the horizontally adjacent sticks at the before last layer. The wood crib is ignited instantaneously by an amount of burning gasoline below. A comprehensive simulation of such a practical sophisticated combustion is still too difficult to realize with any currently available computer, although the performance of modern processors is getting better everyday. We could carry it out here through parallel computing on the HPC(High Performance Computing) cluster as the feasible alternative. At last the validation has been executed by means of temperature distribution data measured by the thermal video camera.

  • PDF

A Study on the Burning Rate of Fire Retardant Treated Wood (난연처리된 목재의 연소속도에 관한 연구)

  • Park, Hyung-Ju
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.6
    • /
    • pp.46-54
    • /
    • 2007
  • The purpose of this study was to examines the burning rate of fire retardant treated wood in the cone heater with a one-dimensional integral model. The wood samples used in this study were four species. The species of woods are Redwood, White oak, Douglas fir and Maple. Each sample was nominally 50mm thick and 100mm square. Samples were exposed to a range of incident heat fluxes 10 to $35kW/m^2$ using the cone heater. A one-dimension integral model has been used to predict burning rate, heat of gasification, flame heat fluxes, charring rate and char depth of samples. As a result measurement of mass loss rate, softwoods(Redwood and Douglas fir) has relatively low value than those for hardwoods(White oak and Maple). Average charring rate of woods in case of fire retardant treatment showed reduction effect of 41.29%, 50.00%, 48.18% and 60.82% for Redwood, Douglas fir, White fir and Maple, respectively. Almost all the predictions from integral model showed faster charring than those measured. Average difference between predictions and experimental data was 16%, 9.5% and 11.8% for N, F1 and F2 respectively. Water-soluble fire retardant used in this study find out more effect in hardwood than softwood from the result of measurement of mass loss rate and average charring rate.

Comparison on Social Cost by Unit Calorific Value between Wood Pellets and Coals (목재펠릿과 석탄의 단위 발열량에 따른 사회적 비용 비교 분석)

  • Li, Lingying;Kim, Joon Soon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.33 no.4
    • /
    • pp.403-410
    • /
    • 2017
  • With the growing importance of GHG reduction, wood pellets are considered as a cheaper renewable energy and carbon neutral. On the other hand, there is a concern that the burning wood pellets may release even more air pollutants such as CO and VOCs. In this study, we analyzed the social costs of burning fuels including wood pellets and coals based on the unit calorific value. The social costs were calculated by sum of the import costs of the fuels and the emission costs of the air pollutants. The results showed that wood pellets are inferior to coals in the aspect of the social costs. It is necessary to improve the quality of the wood pellets and pellet boiler facilities for being used eco-friendly energy sources in the future. We suggest that the control facilities of CO and VOCs should be installed, if the control costs are lower than the pollution costs.

A Study on the Source Profile Development for Fine Particles (PM2.5) Emitted from Biomass Burning (Biomass-burning에서 배출되는 미세입자 (PM2.5)의 배출원 구성물질 성분비 개발에 관한 연구)

  • Kang, Byung-Wook;Lee, Hak-Sung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.4
    • /
    • pp.384-395
    • /
    • 2012
  • This study was performed to develop the source profiles for fine particles ($PM_{2.5}$) emitted from the biomass burning. The multi-method research strategy included a usage of combustion devices such as field burning, fireplace, and residential wood burning to burn rice straw, fallen leaves, pine tree, and oak tree. The data were collected from multiple sources and measured water-soluble ions, elements, elemental carbon (EC), and organic carbon (OC). From this study, it turned out that OC (34~67%) and EC (1.2~39%) are the major components emitted from biomass burning. In the case of burning rice straw at field burning, OC (66.6%) was the most abundant species, followed by EC (4.3%), $Cl^-$ (3.6%), Cl (2.1%), and $SO^{2-}_4$(1.9%). Burning rice straw, fallen leaves, pine tree, and oak tree at fireplace, the amount of OC was 58.5%, 52.7%, 52.5%, and 61.2%, and that of EC was 1.2%, 18.4%, 36.5%, and 2.7%, respectively. The ratio of OC for the burning of pine tree and oak tree from the residential wood burning device was 56.9% and 34.3%, and that of EC was 25% and 38.6%, respectively. Applying the measured data with respect to the proportion of components emitted from biomass burning to reference model, it turned out that self-diagnosed result was appropriate level, and the result based on the model is in highly corresponding to actual timing of biomass burning.

Ignition and Heat Release Rate of Wood-based Materials in Cone Calorimeter Tests

  • Park, Joo-Saeng;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.1-8
    • /
    • 2008
  • This study was performed to evaluate the burning characteristics of wood-based materials and the effect of surface treatment of fire retardant using cone calorimeter. Four types of wood-based materials, such as Plywood, Oriented Strand Board (OSB), Particle Board (PB) and Medium Density Fiberboard (MDF), were tested at a constant heat flux of $50kW/m^2$ to investigate the time to ignition, mass loss rate, heat release rate, effective heat of combustion, etc. In addition, each type of wood-based material was tested at the same heat flux after fire retardant treatment on the surface to evaluate the effect of this treatment on the burning characteristics. The surface treatment of fire retardant, by the amount of $110g/m^2$, delayed the time to ignition almost twice. However, it was indicated that heat release rate, mass loss rate, and effective heat of combustion were not significantly affected by fire retardants treatment for all types of wood-based materials.