• Title/Summary/Keyword: wood board

Search Result 331, Processing Time 0.023 seconds

Manufacture of Crack-free Carbonized Board from Fiberboard (섬유판을 이용한 무할렬 탄화보드 제조)

  • Park, Sang-Bum;Lee, Sang-Min;Park, Jong-Young;Lee, Seon-Hwa
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.4
    • /
    • pp.293-299
    • /
    • 2009
  • In manufacturing the crack-free carbonized boards using fiberboards, shrinking ratio, weight loss and density variation of carbonized boards at each carbonization temperature were investigated. Fiberboards with thickness of 3, 4.5, 6, and 18 mm were carbonized while pressed with pressure plates at different temperature from $400^{\circ}C$ to $1,000^{\circ}C$ using a ordinary laboratory furnace. Either of crack or twist was not observed in fiberboards by adapting the pressing carbonization method. The ratios of shrinkage of length, width, and thickness were 10~25%, 12~25%, and 28~48%, respectively, and shrinkage ratio of thickness was higher than those of length and width with increasing the carbonization temperature. Weight loss tended to increase with increasing the carbonization temperature, but low correlation between weight loss in thickness of fiberboards and carbonization temperature was observed. Density of 3 mm carbonized hardboard had the highest value and it tended to increase with increasing the carbonization temperature.

Radiocarbon Dating of a Wooden Board from Jeongsusa Temple Using Wiggle Matching of Quinquennial Tree-Ring Samples (5년 간격 연륜의 위글매치를 이용한 정수사 법당 목부재의 방사성탄소연대 측정)

  • Nam, Tae-Kwang;Park, Jung-Hun;Hong, Wan;Park, Won-Kyu
    • Journal of Conservation Science
    • /
    • v.28 no.1
    • /
    • pp.1-5
    • /
    • 2012
  • This paper reports the application of radiocarbon wiggle-matching for Korean wooden artifacts such as buildings and Buddhist statues for precise dating. Nine quinquennial (every five-year) samples of 41 years (AD 1250-1290) for AMS radiocarbon measurements were prepared from a wooden board used for the Main Hall at Jeongsusa (temple) in Kangwhado, Korea, which was dendrochronologically dated. The 95.4% confidence interval of radiocarbon dating prior to wiggle matching was 113.3 year in average. When wiggle-matching technique was applied, it became 20 years, 5.7 times smaller than that produced without wiggle matching. The results indicated that wiggle-matching technique using the calibration curve for northern hemisphere (IntCal04) can produce precise dates for Korean wooden artifacts, at least, for the $13^{th}$ century.

The estimated drying schedule of Fagaceae four species grown in Kangwon-Do (강원도산(江原道産) 참나무과(科) 4 수종(樹種)의 추정건조(推定乾燥)스케쥴)

  • Park, Jong-Su;Kim, Su-Chang
    • Journal of Forest and Environmental Science
    • /
    • v.10 no.1
    • /
    • pp.38-48
    • /
    • 1994
  • This study was carried out to estimate drying schedule of Fagaceae four species grown in Kangwon-Do by oven-drying at $100^{\circ}C$ which aimed to elucidate the characteristics such as current moisture content, drying process, initial check, collapse and internal check during drying. The results were summerized as follows ; Current moisture content of each board showed a rapid drying curve with the hight initial moisture content of board and species with the high initial moisture content took long to do drying. Appearance of checks for Quercus variabilis were extremely severe and estimated schedule was $T_5-C_2$. The shrinkage rate of grain direction was in the order of tangential direction > radial direction > longitudial direction and the shrinkage rate of oven-drying at $100^{\circ}C$ was bigger than normal shrinkage rate.

  • PDF

Electrical Properties and Far-infrared Ray Emission of Ceramics Manufactured with Sawdust and Rice Husk (톱밥과 왕겨로 제조된 세라믹의 전기적 성질과 원적외선 방사특성)

  • Oh, Seung Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.1
    • /
    • pp.106-112
    • /
    • 2016
  • This study investigated electrical properties and far-infrared ray emission according to the carbonizing temperature and phenol-formaldehyde (PF) resin impregnation ratio of ceramics manufactured using sawdust and rice husk. The far-infrared ray emission values and emission energy values decreased as the carbonizing temperature increased. The far-infrared ray emission values of the ceramics manufactured using a carbonizing process at $600^{\circ}C$ and a board with a PF resin impregnation ratio of 60 percent was 0.930; the emission energy presented the highest value of $4.32{\times}10w/m^2$. The electric resistance decreased as the carbonizing temperature increased. For the increase in the carbonizing temperature above $1200^{\circ}C$, ceramics was very close to a conductor due to the small resistance. The power consumption increased by the decrease of electric resistance and increase of the electric current in the case of a higher resin impregnation ratio.

Structures and Competitiveness of Softwood Products in Korean Import Market (우리나라 수입(輸入) 침엽수재(針葉樹材) 시장구조(市場構造) 및 수종별(樹種別) 경쟁력(競爭力))

  • Kim, Wae-Jung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.34-42
    • /
    • 1991
  • Protection of tropical forest affects on significant reduce of tropical hardwood supply, and softwood resources will be increasingly important for the timber security in Korea. U.S. softwood log was most favorite species for Korean softwood log importers in overall import conditions except price stablization and consistency of export policy. Reduced export volume from Pacific Northwest to Korean market has been immediately replenished by rediata pine from New Zealand and Chilean plantation. Siberian timber will hardly play major roles in Korean timber market unless budding structure. softwood plywood and softwood furniture uses are enhanced. Recent rapid rise of labor cost and reducing tariff rrate in Korea provided better opportunities for import lumber in building materials market. Dry dimension lumber was relatively profitable when processed from import U.S. soft-wood log while green lumber was favorable products processed from radiata pine log in Korean lumber market. This means U.S. softwood lumber would have better opportunity to market for '2${\times}$'4 studs when wood frame housing is introduced. On the other hand while radiata pine is competitive on temporary construction lumber such as supporter and concrete forming frame in Korea. Shortage of raw material for the new capacity of board plants in Korea will be it bottle neck. Major log export countries to Korea as U.S. New Zealand and Chile showed high trade intensity indices of composite hoard produces for Korean market. As Korea efforts to diversify import sources, and tariffs are reduced to 8% as scheduled by 1994. countries of scoring higher comparative advantages as Portugal. Brazil, Austria as well as New Zealand will have better opportunity to penetrate into promised Korean composites hoard market.

  • PDF

New Micropolymer Technologies for Increased Drainage and Retention for both Wood and Non-Wood Containing Furnishes (목질 및 비목질 함유 지료의 탈수속도와 보류향상을 위한 새로운 마이크로폴리머 기술)

  • Lewis, Christopher;Polverari, Marco
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2008.05a
    • /
    • pp.1-46
    • /
    • 2008
  • The ability to control filler performance and fines retention is vital in the development of both filled and non filled grades, respectively. This is very important when achieving the desired sheet structure necessary to maximize machine performance and end user demands. A narrow balance exists in attaining the desired retention and formation particularly in systems with heavier ash loads and producing paper and paper board on higher speed high shear equipment. A new generation of both cationic and anionic micropolymer technologies has been developed. These water based chemistries are volatile organic compound (VOC) and alkyphenol ethoxylate (APE) free. When these novel micropolymers are applied with linear poly-acrylamide or in conjunction with inorganic microparticle technologies (such as silica or swellable minerals), substantial increases in drainage, fibre retention and ash retention are observed. These improvements have been observed not only in high filled wood and non wood containing grades such as fine paper and super calendared sheets (SCA), but also in low filled newsprint grades. Of particular note is the drainage improvement seen with the application of the cationic micropolymers in unbleached packaging grades with poly-acrylamide.

  • PDF

Manufacture of Cement-Bonded Particleboards from Korean Pine and Larch by Curing of Supercritical CO2 Fluid

  • Suh, Jin-Suk;Hermawan, Dede;Kawai, Shuichi
    • Journal of the Korean Wood Science and Technology
    • /
    • v.28 no.4
    • /
    • pp.41-50
    • /
    • 2000
  • Cement-bonded particleboard is being used as outdoor siding material all over the world, because this composite particularly bears a light weight, high resistance against fire, decay, and crack by cyclic freezing and thawing, anti-shock property, and strength enhancement. Construction systems are currently changing into a frame-building style and wooden houses are being constructed with prefabrication type. Therefore, they require a more durability at outdoor-exposed sides. In this study, the cement hydration property for Korean pine particle, Japanese larch particle and face- and middle layer particles (designated as PB particle below) used in Korean particleboard-manufacturing company was investigated, and the rapid manufacturing characteristics of cement-bonded particleboard by supercritical $CO_2$ curing was evaluated. Korean pine flour showed a good hydration property, however, larch flour showed a bad one. PB particle had a better hydration property than larch flour. The addition of $Na_2SiO_3$ indicated a negative effect on hydration, however, $MgCl_2$ had a positive one. Curing by supercritical $CO_2$ fluid gave a conspicuous enhancement in the performances of cement-bonded particleboards compared to conventional curing. $MgCl_2$ 3%-added PB particle had the highest properties, and $MgCl_2$ 1%-added Korean pine particle had the second class with the conditions of cement/wood ratio of 2.7, a small fraction-screened particle and supercritical curing. On the contrary, the composition of non-hammermilled or large fraction-screened particle at cement/wood ratio of 2.2 was poorer. Also, the feasibility for actual use of 3%-added, small PB particle-screened fraction was greatest of all the conventional curing treatments. Relative superiority of supercritical curing vs. conventional curing at dimensional stability was not so apparent as in strength properties. Through the thermogravimetric analysis, it was ascertained that the peak of a component $CaCO_3$ was highest, and the two weak peaks of calcium silicate hydrate and ettringite and $Ca(OH)_2$ were present in supercritical treatment. Accordingly, it was inferred that the increased formation of carbonates in board contributes to strength enhancement.

  • PDF

Bonding Properties and Resin Exudation Characteristics of Pitch Pine (리기다소나무재의 수지 삼출성과 접착 특성)

  • Roh, JeongKwan;Kim, Yun Geun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.3
    • /
    • pp.213-220
    • /
    • 2018
  • In order to use Pitch pine (Pinus rigida Miller) as the material of the structural glued laminated timber, the effect of the amount of resin exudation due to storage time after the planning and the knot of the lamina were evaluated on the bonding properties of the glued board with resorcinol resin. For Pitch pine that was dried at high temperature ($120{\sim}95^{\circ}C$) and low temperature ($65{\sim}50^{\circ}C$), the flat sawn(tangential section) showed higher amount of resin exudation than the quarter sawn(radial section). And the low temperature drying wood showed higher resin exudation than the high temperature drying wood. The low and high temperature drying wood showed the highest amount of resin exudation on the 3rd day and 7th day, respectively and they were gradually decreased. However, there were no significant differences from 15 to 90 days. Adhesion performances were low until 2~3 days with high exudation of resin, but there were no significant differences after 15 days. Both high temperature and low temperature drying woods satisfied the Korean standard regardless of the storage time. The adhesive strengths of the laminating parts including knots were higher than those of KS criteria, but the wood failures were not satisfied the KS standard. Adhesive performances according to the laminating combinations (quarter sawn + quarter sawn, flat sawn + flat sawn, quarter sawn + flat sawn) were better than those of KS criteria in all laminating combinations in both high temperature and low temperature drying woods.

Effect of the Kind and Content of Raw Materials on Dynamic Modulus of Elasticity of Hybrid Composite Boards Composed of Green Tea, Charcoals and Wood Fiber (녹차-숯-목재섬유 복합보드의 동적탄성률에 미치는 구성원료의 종류 및 배합비율의 영향)

  • Park, Han-Min;Heo, Hwang-Sun;Sung, Eun-Jong;Nam, Kyeong-Hwan;Lim, Jae-Seop;Byeon, Hee-Seop
    • Journal of agriculture & life science
    • /
    • v.46 no.6
    • /
    • pp.75-86
    • /
    • 2012
  • In this study, eco-friendly hybrid composite boards were manufactured from green tea, 3 kinds of charcoals and wood fiber for developing interior materials to reinforce the strength performances and the functionalities in addition to performances of the hybrid composite boards composed of green tea and wood fiber. The effects for the kind and the component ratio of raw materials on dynamic MOE (modulus of elasticity) were investigated, and static bending strength performances were nondestructively estimated. Dynamic MOEs were highest in the hybrid composite boards composed of green tea, fine charcoal and wood fiber on the whole. However, the difference caused by the kind of charcoals was small. These values decreased with increasing component ratios of green tea and charcoals. The hybrid composite boards using $E_1$ grade urea resin had the higher values than those using $E_0$ grade urea resin, however the difference between them markedly decreased than that of hybrid composite board composed of green tea and wood fiber, and it was found that these values were markedly improved than those of the hybrid composite boards composed of green tea and wood fiber. There were mostly high correlations with significance at 1% level between dynamic MOEs and static bending strength performances, and this means that the static bending strength performances can be estimated from dynamic MOE.

Hygroscopic Properties of Light-Frame Wall with Different Assemblies

  • Kim, Se-Jong;Park, Chun-Young;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.2
    • /
    • pp.22-29
    • /
    • 2006
  • On purpose to reduce accumulated moisture and to prevent moisture condensation in a light-frame wall, thermal characteristics and moisture behaviors were investigated for four different wall assemblies; a) typical wall, b) addition of vapor retarder between the insulation and the gypsum board, c) addition of air gap for natural ventilation behind the siding, d) composition with b) and c). Each wall was tested under two climate conditions; 1) $20^{\circ}C$, 50% RH (indoor) and $30^{\circ}C$, 85% RH (outdoor), 2) $30^{\circ}C$, 85% RH (indoor) and $20^{\circ}C$, 50% RH (outdoor).The results showed that the typical wall assembly had poor resistance against moisture intrusion from the inside of building. Outdoor and indoor humidity caused the moisture condensations on the inside of the siding and the back surface of the sheathing respectively. The addition of a vapor retarder did not give significant improvement in preventing the moisture intrusion.