• Title/Summary/Keyword: wlan

Search Result 1,249, Processing Time 0.023 seconds

A Study on TDMG Pulse Performance and Structure for Performance Improvement of UWB system (UWB 시스템의 성능개선을 위한 TDMG 펄스 발생기의 성능과 구조에 관한 연구)

  • Ko, Young-Eun;Bang, Sung-Il
    • The KIPS Transactions:PartC
    • /
    • v.11C no.3
    • /
    • pp.395-400
    • /
    • 2004
  • Being aware of growing needs for wireless communication led to the development of UWB systems, this study proposed an impulse for single band UWB systems which does not count a carrier; analyzed the characteristics and the problems of pulses suggested by the existing poise of the Un system; finally, proposed TDMG(Time Delay Multiple Gaussian) pulse that generates signals of UWB without attenuation of pulse width. The hardware structure of the TDMC pulse for the single band UWB system was modelled after describing the pulse in a mathematical method in an attempt to compare with performances of the existing pulses through computer simulation. The outcome of the test unveiled the fact that each center frequency of the TDMG pulse rose approximately 1GHz, and also each l0dB fractional bandwidth of the TDMG pulse was widened over 1GHz. In the case of derivative, center frequencies of the TDMG pulse rose over 1GHz each. As a consequence, the TDMG pulse appeared to have better quality frequency, satisfying the characteristics of spectrum and the band of frequency recommended by the FCC and decreasing interference with other wireless communication systems.

Design and Implementation of a Multi-Interface Mobile Gateway for Seamless Handoff Sciences (끊김 없는 핸드오프를 위한 다중 인터페이스 이동형 게이트웨이 설계 및 구현)

  • Choi, Hyun-Jun;Lee, Chae-Seok;Lee, Sung-Ho;Kim, Jong-Deck
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.6B
    • /
    • pp.474-482
    • /
    • 2012
  • Mobile Gateway(MG) is a wireless LAN device to provide internet services to a passenger on vehicles like a bus. For using internet services, MG connects the Road Side Unit AP(RSU AP) based on WLAN .To provide a stable communication service on the moving vehicle, handoff changing MG's RSU must be handled fast and stably. However, it has a physical limits to remove a disconnection time of handoff process by reason of its technological features. In this paper, we suggest a MIMG(Multi-Interface Mobile Gateway) executing seamless handoff by using multiple wireless LAN interfaces for connecting RSU. In the detailed way to do stable handoff, we suggest the "Link Sharing Technique" to disconnection time of packet transmission for RSU to MIMG and the "Path Sharing Technique" to remove disconnection time of packet transmission for MIMG to RSU. we implemented the MIMG which performs the suggested handoff technique. We confirmed the superiority of our system by remove of the disconnection time(0 ms), and improved over 50 % of the communication bandwidth.

Network Interface Selection Algorithm on Vertical Handoff between 3G Networks and WLANs (3G 네트워크와 무선랜 사이 계층적 핸드오프의 네트워크 인터페이스 선택 알고리즘)

  • Seok Yongho;Choi Nafiung;Choi Yanghee
    • Journal of KIISE:Information Networking
    • /
    • v.32 no.2
    • /
    • pp.203-214
    • /
    • 2005
  • The integration of 3G networks and WLANs as complementary has been begun to attract much attention in industry as well as academia. This topic is becoming a burning issue, and one of the key questions which it raises is how to support a seamless vertical handoff. This paper introduces a new network interface selection algorithm for energy-efficient vertical handoff in tightly coupled systems capable of supporting seamless handoff. Our proposed scheme, Wise Interface Selection (WISE) switches the active network interface, after taking into consideration the characteristics of the network interface cards and the current level of data traffic, with the cooperation of the mobile terminals and network. Network interface switching operates independently on both the downlink and the uplink for the purpose of energy conservation. We show through simulation that less energy is consumed with WISE than when only a 3G network or WLAN interface is used, resulting in a longer lifetime for the mobile terminals. In the case of TCP connections, additional throughput gain can also be obtained.

Study on Indoor Wireless Environment of mmWave WLAN Communication (초고주파 근거리 통신의 실내 무선 환경 연구)

  • Shin, Dong-Il;Kim, Woo-Seong;Park, Yang-Jae
    • Journal of Digital Convergence
    • /
    • v.16 no.1
    • /
    • pp.147-152
    • /
    • 2018
  • Recently, as the demand for transmission of ultra-high quality media data such as UHD, AR, and VR increases, various technologies for this have been actively developed and IEEE 802.11ad standard have been commercialized. In this paper, a test bed is constructed to analyze the indoor wireless environment using the IEEE 802.11ad standard based on mmWave, and the experimental results of various indoor wireless environments are introduced and analyzed. We compared the data from the module by data transmission, such as signal to noise ratio(SNR) and throughput. And we measured the beam pattern and width of the module and compared the effects on the indoor environment of the corridor and the office. This shows that the signal reflection of the wall shows higher SNR values and is more suitable to use for indoor than outdoor. It is confirmed that the loss when not in line of sight(LoS) is not enough to compensate the wall reflected signal. As a result, it is judged to be suitable for the indoor use of the mmWave LAN and can be usefully used for further experiments.

An analysis of optimal design conditions of LDPC decoder for IEEE 802.11n Wireless LAN Standard (IEEE 802.11n 무선랜 표준용 LDPC 복호기의 최적 설계조건 분석)

  • Jung, Sang-Hyeok;Na, Young-Heon;Shin, Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.4
    • /
    • pp.939-947
    • /
    • 2010
  • The LDPC(Low-Density Parity-Check) code, which is one of the channel encoding methods in IEEE 802.11n wireless LAN standard, has superior error-correcting capabilities. Since the hardware complexity of LDPC decoder is high, it is very important to take into account the trade-offs between hardware complexity and decoding performance. In this paper, the effects of LLR(Log-Likelihood Ratio) approximation on the performance of MSA(Min-Sum Algorithm)-based LDPC decoder are analyzed, and some optimal design conditions are derived. The parity check matrix with block length of 1,944 bits and code rate of 1/2 in IEEE 802.11n WLAN standard is used. In the case of $BER=10^{-3}$, the $E_b/N_o$ difference between LLR bit-widths (6,4) and (7,5) is 0.62 dB, and $E_b/N_o$ difference for iteration cycles 6 and 7 is 0.3 dB. The simulation results show that optimal BER performance can be achieved by LLR bit-width of (7,5) and iteration cycle of 7.

Implementation of LDPC Decoder using High-speed Algorithms in Standard of Wireless LAN (무선 랜 규격에서의 고속 알고리즘을 이용한 LDPC 복호기 구현)

  • Kim, Chul-Seung;Kim, Min-Hyuk;Park, Tae-Doo;Jung, Ji-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.12
    • /
    • pp.2783-2790
    • /
    • 2010
  • In this paper, we first review LDPC codes in general and a belief propagation algorithm that works in logarithm domain. LDPC codes, which is chosen 802.11n for wireless local access network(WLAN) standard, require a large number of computation due to large size of coded block and iteration. Therefore, we presented three kinds of low computational algorithms for LDPC codes. First, sequential decoding with partial group is proposed. It has the same H/W complexity, and fewer number of iterations are required with the same performance in comparison with conventional decoder algorithm. Secondly, we have apply early stop algorithm. This method reduces number of unnecessary iterations. Third, early detection method for reducing the computational complexity is proposed. Using a confidence criterion, some bit nodes and check node edges are detected early on during decoding. Through the simulation, we knew that the iteration number are reduced by half using subset algorithm and early stop algorithm is reduced more than one iteration and computational complexity of early detected method is about 30% offs in case of check node update, 94% offs in case of check node update compared to conventional scheme. The LDPC decoder have been implemented in Xilinx System Generator and targeted to a Xilinx Virtx5-xc5vlx155t FPGA. When three algorithms are used, amount of device is about 45% off and the decoding speed is about two times faster than convectional scheme.

Design and Implementation of Geographical Handoff System Using GPS Information (GPS정보를 이용한 위치기반 핸드오프 시스템의 설계 및 구현)

  • Han, Seung-Ho;Yang, Seung-Chur;Kim, Jong-Deok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.1A
    • /
    • pp.33-43
    • /
    • 2010
  • Recently, users want to use real-time multimedia services, such as internet, VoIP, etc., using their IEEE 802.11 wireless lan mobile stations. In order to provide such services, a handoff among access points is essential to support the mobility of a node, in such an wide area. However, the legacy handoff methods of IEEE 802.11 technology are easy to lose connections. Also, the recognition of a disconnection and channel re-searching time make the major delay of the next AP to connect. In addition, because IEEE 802.11 decides the selection of an AP depending only on received signal strength, regardless of a node direction, position, etc., it cannot guarantee a stable bandwidth for communication. Therefore, in order to provide a real-time multimedia service, a node must reduce the disconnection time and needs an appropriate algorithm to support a sufficient communication bandwidth. In this paper, we suggest an algorithm which predicts a handoff point of a moving node by using GPS location information, and guarantees a high transmission bandwidth according to the signal strength and the distance. We implemented the suggested algorithm, and confirmed the superiority of our algorithm by reducing around 3.7ms of the layer-2 disconnection time, and guaranteed 24.8% of the communication bandwidth.

A TXOP Sharing Scheme for QoS Strategy of IEEE 802.11ac DL MU-MIMO MAC (IEEE 802.11ac DL MU-MIMO MAC의 QoS 정책을 고려한 TXOP 공유 방안)

  • Lee, Ji-Young;Seok, Seung-Joon
    • Journal of Digital Convergence
    • /
    • v.12 no.10
    • /
    • pp.317-327
    • /
    • 2014
  • To improve the efficiency of wireless channel, IEEE 802.11ac uses the DL MU-MIMO MAC scheme through which an AP transmits multiple frames to different mobile nodes simultaneously. IEEE 802.11ac DL MU-MIMO MAC needs a new step, called as TXOP sharing, between legacy IEEE 802.11n DL SU-MIMO's two operations, the obtaining an EDCA TXOP and the transmitting multiple frames for EDCA TXOP. In the TXOP sharing operation, both wireless channel destinations and frames transmitted for its TXOP period should are determined. So this paper deals with the TXOP sharing for improving IEEE 802.11ac MAC performance. However, the EDCA priority based method mentioned by IEEE 802.11ac standard document not fair among the buffers and the frames of buffers, and occurs in high_loss rate and high_delay about specific buffers. In this paper, we propose a new scheme of the TXOP sharing with sequencing p-AC, s-AC in similar properties, and all S-AC. This method provides a differentiated service without damage of EDCA characteristics.

Performance Improvement Scheme based on Proactive Transmission for Reliable Multicast in Wireless LANs (무선 랜에서 신뢰성 있는 멀티캐스트를 위한 능동적 전송 기반의 성능 향상 방법)

  • Kim, Sun-Myeng;Kim, Si-Gwan
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.5
    • /
    • pp.16-24
    • /
    • 2011
  • The IEEE 802.11 wireless LAN (Local Area Network) is widely used for wireless access due to its easy deployment and low cost. Multicast in wireless LANs is very useful for transmitting data to multiple receivers compared to unicast to each receiver. In the IEEE 802.11 wireless LAN, multicast transmissions are unreliable since multicast data packets are transmitted without any feedback from receivers. Recently, various protocols have been proposed to enhance the reliability of multicast transmissions. They still have serious problems in reliability and efficiency due to the excessive control overhead by the use of a large number of control packets in the error recovery process, and due to a large number of retransmissions to satisfy all receivers. In this paper, we propose an effective scheme called PTRM(Proactive Transmission based Reliable Multicast). The proposed scheme uses a block erasure code to generate parity packets and to reduce the impact of independent packet error among receivers. After generating parity packets, the PTRM transmits data packets as many as receivers need to recover error, and then requests feedback from them. The simulation results show that the proposed scheme provides reliable multicast while minimizing the feedback overhead.

A Comparative Study of Aggregation Schemes for Concurrent Transmission over Multiple WLAN Interfaces (다중 무선랜 인터페이스 전송을 위한 결합 방식의 성능 연구)

  • Saputra, Yuris Mulya;Hwang, Hwanwoong;Yun, Ji-Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.7
    • /
    • pp.18-25
    • /
    • 2014
  • To increase wireless capacity, the concurrent use of multiple wireless interfaces on different frequency bands, called aggregation, can be considered. In this paper, we focus on aggregation of multiple Wi-Fi interfaces with packet-level traffic spreading between the interfaces. Two aggregation schemes, link bonding and multipath TCP (MPTCP), are tested and compared in a dualband Wi-Fi radio system with their Linux implementation. Various test conditions such as traffic types, network delay, locations, interface failures and configuration parameters are considered. Experimental results show that aggregation increases throughput performance significantly over the use of a single interface. Link bonding achieves lower throughput than MPTCP due to duplicate TCP acknowledgements (ACKs) resulting from packet reordering and filtering such duplicate ACKs out is considered as a possible solution. However, link bonding is fast responsive to links' status changes such as a link failure. It is shown that different combinations of interface weights for packet spread in link bonding result in different throughput performance, envisioning a spatio-temporal adaptation of the weights. We also develop a mathematical model of power consumption and compare the power efficiency of the schemes applying different power consumption profiles.