• 제목/요약/키워드: with finite sites

검색결과 72건 처리시간 0.024초

A NOTE ON FINITE CONDITIONS OF ORTHOMODULAR LATTICES

  • Park, Eun-Soon
    • 대한수학회논문집
    • /
    • 제14권1호
    • /
    • pp.31-37
    • /
    • 1999
  • We prove the following: every chain-finite OML is path-connected; every finite block of an OML L is path-connected with at least one other block in L; every OML with unifromly finite sites is path-connected.

  • PDF

PATH-CONNECTED AND NON PATH-CONNECTED ORTHOMODULAR LATTICES

  • Park, Eun-Soon;Song, Won-Hee
    • 대한수학회보
    • /
    • 제46권5호
    • /
    • pp.845-856
    • /
    • 2009
  • A block of an orthomodular lattice L is a maximal Boolean subalgebra of L. A site is a subalgebra of an orthomodular lattice L of the form S = A $\cap$ B, where A and B are distinct blocks of L. An orthomodular lattice L is called with finite sites if |A $\cap$ B| < $\infty$ for all distinct blocks A, B of L. We prove that there exists a weakly path-connected orthomodular lattice with finite sites which is not path-connected and if L is an orthomodular lattice such that the height of the join-semilattice [ComL]$\vee$ generated by the commutators of L is finite, then L is pathconnected.

Parallel damage detection through finite frequency changes on multicore processors

  • Messina, Arcangelo;Cafaro, Massimo
    • Structural Engineering and Mechanics
    • /
    • 제63권4호
    • /
    • pp.457-469
    • /
    • 2017
  • This manuscript deals with a novel approach aimed at identifying multiple damaged sites in structural components through finite frequency changes. Natural frequencies, meant as a privileged set of modal data, are adopted along with a numerical model of the system. The adoption of finite changes efficiently allows challenging characteristic problems encountered in damage detection techniques such as unexpected comparison of possible shifted modes and the significance of modal data changes very often affected by experimental/environmental noise. The new procedure extends MDLAC and exploits parallel computing on modern multicore processors. Smart filters, aimed at reducing the potential damaged sites, are implemented in order to reduce the computational effort. Several use cases are presented in order to illustrate the potentiality of the new damage detection procedure.

Biomechanical analysis for different mandibular total distalization methods with clear aligners: A finite element study

  • Sewoong Oh;Youn-Kyung Choi;Sung-Hun Kim;Ching-Chang Ko;Ki Beom Kim;Yong-Il Kim
    • 대한치과교정학회지
    • /
    • 제53권6호
    • /
    • pp.420-430
    • /
    • 2023
  • Objective: The purpose of this finite element method (FEM) study was to analyze the biomechanical differences and tooth displacement patterns according to the traction direction, methods, and sites for total distalization of the mandibular dentition using clear aligner treatment (CAT). Methods: A finite element analysis was performed on four FEM models using different traction methods (via a precision cut hook or button) and traction sites (mandibular canine or first premolar). A distalization force of 1.5 N was applied to the traction site by changing the direction from -30 to +30° to the occlusal plane. The initial tooth displacement and von Mises stress on the clear aligners were analyzed. Results: All CAT-based total distalization groups showed an overall trend of clockwise or counterclockwise rotation of the occlusal plane as the force direction varied. Mesiodistal tipping of individual teeth was more prominent than that of bodily movements. The initial displacement pattern of the mandibular teeth was more predominant based on the traction site than on the traction method. The elastic deformation of clear aligners is attributed to unintentional lingual tipping or extrusion of the mandibular anterior teeth. Conclusions: The initial tooth displacement can vary according to different distalization strategies for CAT-based total distalization. Discreet application and biomechanical understanding of traction sites and directions are necessary for appropriate mandibular total distalization.

크롤러 크레인의 붐 길이 선회각도에 의한 롤러 하중 해석 (Analysis of Roller Load by Boom Length and Rotation Angle of a Crawler Crane)

  • 이득기;강정호;김태현;오철규;김종민;김종명
    • 한국기계가공학회지
    • /
    • 제20권3호
    • /
    • pp.83-91
    • /
    • 2021
  • A crawler crane, which consists of a lattice boom, a driving system, and a movable vehicle, is widely used on construction sites. The crawler crane often traverses rough terrain at these sites; as a result, an overload limiter needs to be installed on the crane to prevent it from overturning and breaking. In this paper, we studied the distributed load change in relation to boom length and the angle of rotation of the roller that comes in direct contact with the grounded track shoe. First, we developed a 3D model of a crawler crane and meshed it for finite elements. Then, we performed finite element analysis to derive the load on the roller. Finally, we graphed and examined the roller distributed load data of the case according to boom length and rotation angle. By detecting the load on the roller of the crawler crane, we can predict the potential for the crane to overturn before it happens.

1D finite element artificial boundary method for layered half space site response from obliquely incident earthquake

  • Zhao, Mi;Yin, Houquan;Du, Xiuli;Liu, Jingbo;Liang, Lingyu
    • Earthquakes and Structures
    • /
    • 제9권1호
    • /
    • pp.173-194
    • /
    • 2015
  • Site response analysis is an important topic in earthquake engineering. A time-domain numerical method called as one-dimensional (1D) finite element artificial boundary method is proposed to simulate the homogeneous plane elastic wave propagation in a layered half space subjected to the obliquely incident plane body wave. In this method, an exact artificial boundary condition combining the absorbing boundary condition with the inputting boundary condition is developed to model the wave absorption and input effects of the truncated half space under layer system. The spatially two-dimensional (2D) problem consisting of the layer system with the artificial boundary condition is transformed equivalently into a 1D one along the vertical direction according to Snell's law. The resulting 1D problem is solved by the finite element method with a new explicit time integration algorithm. The 1D finite element artificial boundary method is verified by analyzing two engineering sites in time domain and by comparing with the frequency-domain transfer matrix method with fast Fourier transform.

골유착성 임플랜트 보철물의 캔틸레버 위치와 길이변화에 따른 삼차원 유한요소법적 응력분석 (A THREE DIMENSIONAL FINITE ELEMENT STRESS ANALYSIS OF OSSEOINTEGRATED PROSTHESIS ACCORDING TO THE LOCATION AND LENGTH OF CANTILEVER)

  • 장복숙;김창회;김영수
    • 대한치과보철학회지
    • /
    • 제34권3호
    • /
    • pp.501-532
    • /
    • 1996
  • This study investigated the effects of cantilever length, location and load condition on stress distribution developed in the implants, prostheses and supporting tissues. The osseointegrated prostheses with two 10mm Branemark implants at 2nd premolar and 1st molar sites with cantilever extensions at 1st premolar, 2nd and 3rd molar sites were constructed. Under 100N, 200N of vertical and $45^{\circ}$ oblique loads at the cantilever pontics, stress distribution patterns and displacement were analyzed with three dimensional finite element method. The results were as follows : 1. The stress was concentrated at the joint of the cantilever pontic and implant superstructure, the neck of implant and the ridge crest near the cantilever But there was little load transfer to the lower supporting tissues of implants. 2. The implant near the cantilever was displaced inferiorly while the implant far from the cantilever was displaced superiorly. In horizontal direction the implants were displaced to the direction where the loads were applied, except the apexes of the implants. 3. In case of anterior cantilever, the stress and displacement were higher than the prosthesis connected with natural tooth. 4. The stress developed in the posterior cantilevered type was higher than in the anterior cantilevered type. The greastest stress was concentrated at the ridge crest near the posterior cantilever. 5. The longer the cantilever, the more the stress was developed and was concentrated at the joint of the cantilever pontic and implant superstructure. 6. Under oblique load, the stress was concentrated at the necks of implants and the ridge crests, but decreased at the joint of the cantilever pontic and implant superstructure than under vertical load.

  • PDF

유한요소법을 이용한 오토바이 헬멧의 충돌 안정성 검토 (Investigation for Impact Stability of the Motorcycle Helmet by Using Finite Element Method)

  • 유병모;송재선;김도;이수경;김용환
    • 소성∙가공
    • /
    • 제16권5호통권95호
    • /
    • pp.370-374
    • /
    • 2007
  • A motorcycle helmet is very essential to protect the head of driver and it is directly connected to driver's life. Prior to producing the helmet, it has to be passed the process of impact test to evaluate its safety. This test evaluates peak acceleration and head injury criteria (H.I.C.). This paper simulates the impact test with finite element method to find the behavior of helmet during the test. Also, the effect of impact sites on the helmet was evaluated to improve the thickness distribution of the helmet.

Influence of Crown Margin Design on the Stress Distribution in Maxillary Canine Restored by All-Ceramic Crown: A Finite Element Analysis

  • Ozer, Zafer;Kurtoglu, Cem;Mamedov, Amirullah M.;Ozbay, Ekmel
    • Journal of Korean Dental Science
    • /
    • 제8권1호
    • /
    • pp.28-35
    • /
    • 2015
  • Purpose: To investigate the influence of crown margin design on the stress distribution and to localize critical sites in maxillary canine under functional loading by using three dimensional finite element analysis. Materials and Methods: The bite force of 100 N, 150 N, and 200 N was applied with an angulation of $45^{\circ}$ to the longitudinal axis of tooth. Six models were restored with IPS e.max (Ivoclar Vivadent, Schaan, Liechtenstein) with a different margin design. With lingual ledge and various thicknesses, three different core ceramics were designed in each model. Result: In the core ceramic, the maximum tensile stresses were found at the labiocervical region. In the veneering ceramic the maximum tensile stresses were found at the area where the force was applied in all models. Conclusion: Shoulder and chamfer margin types are acceptable for all-ceramic rehabilitations. A ledge on the core ceramic at cervical region may affect the strength of all-ceramic crowns.

석회석 광산에서 폐석 적치장 사면의 안정성 평가 (Stability Assesment of the Slope at the Disposal Site of Waste Rock in Limestone Mine)

  • 이상은;장윤호
    • 터널과지하공간
    • /
    • 제20권6호
    • /
    • pp.475-490
    • /
    • 2010
  • L 석회석 광산에서 폐석 덤핑 투하 지점이 놓인 위치에 따라 폐석층 또는 암반층에 따라 구분하고 총11개의 폐석 적치장중 7개소를 대상으로 사면안정해석을 수행하였다. 폐석층에 대해서는 Bishop 법을 이용한 원호파괴 해석과 유한요소법을 적용하였으며, 암반층은 평사투영법에 의해 잠재적인 파괴 가능성을 분석하고 한계평형법 해석에 의해 안전율을 산정하였다. 또한 암반사면의 전체적인 거동을 파악하기 위해 유한요소법을 적용하였다. 이 때 유한요소법으로 사면의 안정성을 안전율로 표시하기 위하여 강도감소법을 이용하였다. 안정 해석결과 폐석층 사면은 D 지역에서, 그리고 암반층의 경우 F와 G 지역에서 사면의 안정성 확보가 곤란한 것으로 평가되었으며, 아울러 폐석 적치장의 해석결과를 토대로 안정성을 확보하기 위한 방안을 제시하였다. 즉, D 지역의 사면은 파괴 활동면을 벗어난 지역에서 덤핑 후 도져에 의해 Push하는 방안이 필요하며, F와 G지역은 단층대 발달이 없는 지역으로 덤핑-투하 지점을 이동하여 적치하는 방안을 추천하였다.