• Title/Summary/Keyword: wireless strain measurement

Search Result 23, Processing Time 0.021 seconds

Development of a Measurement System for Contact Force Analysis of Trolley Line (전기철도 전차선 접촉력 측정 및 분석시스템 개발)

  • Kim, In-Chol;Choi, Kyu-Hyoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.1
    • /
    • pp.82-87
    • /
    • 2010
  • A measurement system of contact force between overhead contact line and pantograph of train is developed which measures the contact force by using four sets of full-bridge strain gauges instead of load cells and accelerometers. The sensors are installed on the pan head of pantograph and the measured data from the sensors are transmitted to a server system in the train by way of wireless Lan. This configuration of the measuring system makes it easy to install on the trains without any alteration of train system. The measurement system is applied to KTX on the Kyungbu high speed line, and the measured contact force data shows good agreement with those measured by load cell and accelerometers. The waveform of the contact force between overhead contact line and pantograph contains essential information about their conditions. The proposed measurement system can probe any defects on overhead contact lines with train running at high speed, which will be a powerful solution for the maintenance of long-distance overhead contact lines.

Layout optimization of wireless sensor networks for structural health monitoring

  • Jalsan, Khash-Erdene;Soman, Rohan N.;Flouri, Kallirroi;Kyriakides, Marios A.;Feltrin, Glauco;Onoufriou, Toula
    • Smart Structures and Systems
    • /
    • v.14 no.1
    • /
    • pp.39-54
    • /
    • 2014
  • Node layout optimization of structural wireless systems is investigated as a means to prolong the network lifetime without, if possible, compromising information quality of the measurement data. The trade-off between these antagonistic objectives is studied within a multi-objective layout optimization framework. A Genetic Algorithm is adopted to obtain a set of Pareto-optimal solutions from which the end user can select the final layout. The information quality of the measurement data collected from a heterogeneous WSN is quantified from the placement quality indicators of strain and acceleration sensors. The network lifetime or equivalently the network energy consumption is estimated through WSN simulation that provides realistic results by capturing the dynamics of the wireless communication protocols. A layout optimization study of a monitoring system on the Great Belt Bridge is conducted to evaluate the proposed approach. The placement quality of strain gauges and accelerometers is obtained as a ratio of the Modal Clarity Index and Mode Shape Expansion values that are computed from a Finite Element model of the monitored bridge. To estimate the energy consumption of the WSN platform in a realistic scenario, we use a discrete-event simulator with stochastic communication models. Finally, we compare the optimization results with those obtained in a previous work where the network energy consumption is obtained via deterministic communication models.

Health Monitoring System of Large Civil Structural System Based on Local Wireless Communication System (근거리 무선통신을 이용한 대형토목구조물의 모니터링시스템)

  • Heo, Gwanghee;Choi, Man-Yong;Kim, Chi-Yup
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.4
    • /
    • pp.199-204
    • /
    • 1999
  • The continuing development of the sensors for the measurement of the safety of structures has been making a turning point in measuring and evaluating the larger civil structural system as well. However, there are still remaining problems to be solved for the extremely large structure because the natural damages of those structures are not so simple to be monitored for the reason of their locational and structural conditions. One of the most significant problems is that a number of cables which connect the measuring system to the analyzer are liable to distort actual data. This paper presents a new monitoring system for large structures by means of a local wireless communication technique which would eliminate the possibility of the distortion of data by noise in cables. This new monitoring system employs the wireless system and the software for data communication, along with the strain sensor and accelerometers which have been already used in the past. It makes it possible for the data, which have been chosen by the central controling system from the various sensors placed in the large civil structures, to be wirelessly delivered and then analyzed and evaluated by decision making system of the structures.

  • PDF

Sedimentation & Consolidation Behaviour of Dredged Clay Fill (준설매립 점토지반의 침강 . 압밀거동)

  • 이승원;지성현;유석준;이영남
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.4
    • /
    • pp.149-156
    • /
    • 2000
  • Sedimentation and self-weight consolidation tests in cylinder and large model tank and field measurement such as settlement and pore water pressure at each layer by wireless automatic instrumentation system were carried out to investigate the behaviour of dredged marine clay fill. The consolidation behaviour for each reclaimed layer was analyzed from these measured data and numerical analysis result using finite strain consolidation theory. It was fond from this study that the consolidation behaviour of dredged clay fill is heavily dependent on the filling process.

  • PDF

A wireless guided wave excitation technique based on laser and optoelectronics

  • Park, Hyun-Jun;Sohn, Hoon;Yun, Chung-Bang;Chung, Joseph;Kwon, Il-Bum
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.749-765
    • /
    • 2010
  • There are on-going efforts to utilize guided waves for structural damage detection. Active sensing devices such as lead zirconate titanate (PZT) have been widely used for guided wave generation and sensing. In addition, there has been increasing interest in adopting wireless sensing to structural health monitoring (SHM) applications. One of major challenges in wireless SHM is to secure power necessary to operate the wireless sensors. However, because active sensing devices demand relatively high electric power compared to conventional passive sensors such as accelerometers and strain gauges, existing battery technologies may not be suitable for long-term operation of the active sensing devices. To tackle this problem, a new wireless power transmission paradigm has been developed in this study. The proposed technique wirelessly transmits power necessary for PZT-based guided wave generation using laser and optoelectronic devices. First, a desired waveform is generated and the intensity of the laser source is modulated accordingly using an electro-optic modulator (EOM). Next, the modulated laser is wirelessly transmitted to a photodiode connected to a PZT. Then, the photodiode converts the transmitted light into an electric signal and excites the PZT to generate guided waves on the structure where the PZT is attached to. Finally, the corresponding response from the sensing PZT is measured. The feasibility of the proposed method for wireless guided wave generation has been experimentally demonstrated.

Implementation of the Pulse Wave Measurement System Using Bipolar Biased Head on Mode of the Hall Sensor (홀 센서의 양극 바이어스 수직모드를 이용한 맥파측정시스템 구현)

  • Jin, Sang-Gon;Kim, Myoung-Nam
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.322-328
    • /
    • 2011
  • There are many ways to detect the heart rate non-invasively such as ECG, PPG, strain gauge, and pressure sensor. In this paper, the pulse wave measurement system using bipolar biased head on mode of the Hall sensor is proposed for measuring the radial artery pulse. TMS320F2812 was used to implement the proposed system and a portable wireless network(zig-bee) was used to show the experimental result. It was confirmed from experiment that the performance of the implemented system was more stable and faster than PPG sensor or piezoelectric film pressure sensor.

Characteristic Measurement by a Real-time Data Acquisition System in Overhead Contact Wire (실시간 계측시스템을 이용한 전차선로 특성 측정)

  • Na, Hae-Kyung;Park, Young;Cho, Yong-Hyeon;Lee, Ki-Won;Park, Hyun-Jun;Oh, Su-Young;Song, Joon-Tae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.3
    • /
    • pp.281-285
    • /
    • 2007
  • Facilities of electric railway should be maintained only at night and it is necessary to maintain by human power because facilities are installed at a high place. This paper presents the development and application of a real-time data acquisition system for the characteristics measurement of overhead contact wires in electric railway. The system is designed to perform in the telemetry environments that developed to store data by wireless in a live wire state of 25 kV power source. The field test results show that the proposed technique and the developed system can be practically applied to measure characteristics of temperature, displacement, and strain on overhead contact lines.

Effective Range Evaluation of Wireless Monitoring System for Monopile (모노파일용 원거리 무선 모니터링 시스템의 유효거리 평가)

  • Park, Kiwon;Lee, Jong-Sub;Choi, Changho;Byun, Yong-Hoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.6
    • /
    • pp.91-100
    • /
    • 2012
  • Wireless monitoring system for the structural health evaluation has a limit to the reliability of measured response. The objective of this study is to evaluate an effective measurement range of the wireless monitoring system on the analyzed data. For the wireless monitoring system, Bluetooth and Wi-Fi are applied to datalogger-receiver and receiver-personal computer, respectively. For the model of the monopile structure response, a laboratory-scale monopile is manufactured with Mono Cast Nylon and a lateral loading is applied by hammer impacting. Strain gauges attached on the model monopile are connected with the datalogger. The distances of datalogger-receiver and receiver-personal computer are changed for the evaluation of the measurement range. Experimental results show that the receiving rates of the response remain almost constant within limited distance, while the receiving rates dramatically decrease out of effective range. In addition, the receiving rates affect on the measured natural frequencies of the model monopile. This study suggests that the effective range evaluation of the wireless monitoring system may be used for the determination of a monitoring distance to the monopile installed in the offshore wind farm.

An original device for train bogie energy harvesting: a real application scenario

  • Amoroso, Francesco;Pecora, Rosario;Ciminello, Monica;Concilio, Antonio
    • Smart Structures and Systems
    • /
    • v.16 no.3
    • /
    • pp.383-399
    • /
    • 2015
  • Today, as railways increase their capacity and speeds, it is more important than ever to be completely aware of the state of vehicles fleet's condition to ensure the highest quality and safety standards, as well as being able to maintain the costs as low as possible. Operation of a modern, dynamic and efficient railway demands a real time, accurate and reliable evaluation of the infrastructure assets, including signal networks and diagnostic systems able to acquire functional parameters. In the conventional system, measurement data are reliably collected using coaxial wires for communication between sensors and the repository. As sensors grow in size, the cost of the monitoring system can grow. Recently, auto-powered wireless sensor has been considered as an alternative tool for economical and accurate realization of structural health monitoring system, being provided by the following essential features: on-board micro-processor, sensing capability, wireless communication, auto-powered battery, and low cost. In this work, an original harvester device is designed to supply wireless sensor system battery using train bogie energy. Piezoelectric materials have in here considered due to their established ability to directly convert applied strain energy into usable electric energy and their relatively simple modelling into an integrated system. The mechanical and electrical properties of the system are studied according to the project specifications. The numerical formulation is implemented with in-house code using commercial software tool and then experimentally validated through a proof of concept setup using an excitation signal by a real application scenario.

Spin Test of 5 kWh Composite Flywheel Rotor (5 kWh 복합재 플라이휠 로터의 회전 시험)

  • Han, Hoon-Hee;Ha, Sung-Kyu;Kim, Jae-Hyuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.9
    • /
    • pp.3135-3140
    • /
    • 2010
  • A 5 kWh composite flywheel rotor was designed and manufactured, and its spin test was performed to monitor strain distribution and burst speed. Strain distribution in radial and circumferential directions of the rotor were measured using a wireless telemetry system based on bluetooth technology for real-time strain measurement. The strains was compared with pre-calculated design values to verify the initial rotor design. We noticed the rotor failed at 19,499 rpm in the spin test, 11 % lower than the predicted burst speed of 22,000 rpm. Failure occurred at the hub which connects the shaft and the composite rotor. The performance of the composite rotor was confirmed in a general sense, and the danger of unexpected failure of composite rotor during high-speed spinning was also demonstrated in this paper. Special attention should be paid to not only composite rotor but also hub when designing a flywheel energy storage system. The telemetry system needs to be further developed, especially enduring the high centrifugal forces, and can be used in a real time monitoring system for the flywheel energy storage system.