• Title/Summary/Keyword: wireless strain measurement

Search Result 23, Processing Time 0.037 seconds

Railway structure health monitoring using innovative sensing technologies (첨단계측센서를 이용한 철도 구조물의 모니터링)

  • Lee, Kyu-Wan;Jung, Sung-Hoon;Park, Eun-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.772-777
    • /
    • 2008
  • Recent development of fiber optic sensors and wireless sensor technology, made structural health monitoring of railway structures cost effective. In this paper, a micro bending fiber optic rail pad sensors are evaluated for train axle force measurement. In order to assess the usability of FBG fiber optic sensors for short-term bridge measurement, the FBG sensors and conventional strain gauges are installed at the same points and the strain results are compared. Also the impact factors are calculated using the FBG strain responses and the results are compared with the conventional sensor responses. A running KTX train was instrumented with wireless sensor system to measure the vibration characteristics and the results are compared with conventional wire sensor system.

  • PDF

Design and Development of Strain Measurement System Based on Zigbee Wireless Network (Zigbee 무선통신 네트워크 기반 변형측정 시스템 설계 및 개발)

  • Kim, Sang-Seok;Park, Jang-Sik;Go, Seok-Jo;Ro, Hee-Jong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.3
    • /
    • pp.585-590
    • /
    • 2012
  • In this paper, a system using vibrating wire sensor and zigbee wireless network has been implemented to monitor and manage the structure. The implemented strain controller drives vibrating wire sensor and computes strain from measuring frequency of the output signal. Temperature sensor is included to compensate strain by temperature. Using two axis acceleration sensor of strain controller can measure the direction of strain or deformation. To measure strain more effectively, wired and wireless communication function is included in this device. As results of experiments, it is shown that the developed system can be effectively applied to measure strain of the structure.

Implementation of Wireless Measurement System for Tire Deformation (타이어 변형량의 무선 계측 시스템 구현)

  • Park, Sang-Su;Kwak, Seong-Woo;Yang, Jung-Min
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.4
    • /
    • pp.671-678
    • /
    • 2020
  • In this paper, a wireless measurement system has been developed which can measure the deformation of a tire in real time by utilizing strain gauge sensors and Zigbee wireless communication. A strain gauge sensor is mounted inside the tire and then the strain on the tire is obtained using the DSP module. The acquired sensor values are transmitted into the vehicle by radio communication. The wireless receiver module installed inside the vehicle can monitor the deformation of the tire in real time. The deformation of the tire can be used for measuring the load applied to each tire or the speed of the tire. The load or speed applied to the tires are essential parameters for the stable control of autonomous vehicles.

A Calibration and Uncertainty Analysis on the Load Monitoring System for a Low Speed Shaft and Rotor Blade of a Wind Turbine (풍력발전기 주축 및 날개 부하 측정시스템의 보정 및 불확실성 해석)

  • Park Moo-Yeol;Yoo Neung-Soo;Nam Yoon-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.5 s.248
    • /
    • pp.560-567
    • /
    • 2006
  • The exact load measurements for the mechanical parts of a wind turbine are important step both fur the evaluation of a specific wind turbine design and for a certification process. A common method for a mechanical load measurement is using a strain gauge sensing. Two main problems ought to be answered in order for this method to be applied to the wind turbine project. These are strain gauge calibration and non-contact signal transmission from the strain gauge output to a load monitoring system. This paper suggests reliable solutions fer these two problems. A Bluetooth, a short range wireless data communication technology, is used to solve the second problem. The first one, the strain gauge calibration methodology for a load measurement in a wind turbine application, is fully explained in this paper. Various mechanical loadings for a strain gauge calibration in a wind turbine load measurement are introduced and analyzed. Initial experimental results which are obtained from a 1 kW small size wind turbine are analyzed, and the uncertainty problem in estimating mechanical loads using a calibration matrix is fully covered in this paper.

Innovative cable force monitoring of stay cables using piezoelectric dynamic strain responses

  • Nguyen, Khac-Duy;Huynh, Thanh-Canh;Lee, Ji-Yong;Shin, Sung Woo;Kim, Jeong-Tae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.830-834
    • /
    • 2013
  • This study presents a method to monitor cable force of a long-span cable-stayed bridge using a smart piezoelectric sensor system. The following approaches are implemented in order to achieve the objective. Firstly, the method to utilize piezoelectric materials for the health monitoring of stay cables is presented. For strain measurement of a stay cable, a PZT-embedded smart skin is designed to overcome the difficulties of bonding PZT sensors directly on stay cables. Secondly, a piezoelectric strain monitoring system for stay cables is designed. For the operation of the sensor board, the Imote2 sensor platform is used to provide the computation, wireless communication and power supply units. The feasibility of the proposed monitoring system is then evaluated on a full-scale cable of a cable-stayed bridge.

  • PDF

Development of a Wireless Telemetry Measurement Algorithm Using Smart Phones and Digital Image Correlation (스마트 폰과 이미지 상관법을 이용한 무선 원격 계측 알고리즘 개발)

  • Choi, In Young;Kang, Young June;Hong, Kyung Min;Kim, Seong Jong;Lee, Hae Gyu
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.4
    • /
    • pp.434-440
    • /
    • 2015
  • A smart phone is a multimedia device that is a necessity for modern people. It includes a wireless networking system to share information and pictures. However, numerous smart phones are discarded every year, since they have a very fast technology development cycle. This paper presents the development of a telemetry algorithm to measure displacement and strain with a discarded smart phone and digital image correlation methods. To implement the measurement algorithm, the LabVIEW 2010 program development platform was used. In order to verify reliability, an open hole tension test was conducted using a smart phone and a universal test machine. In addition, the measurement results from the smart phone were compared with FEM analysis results.

Development of Wireless Measurement System for Bridge Using PDA and Fiber Optical Sensor (PDA와 광섬유 센서를 이용한 교량의 무선계측 시스템 개발)

  • Kwak, Kae-Hwan;Hwang, Hae-Sung;Jang, Hwa-Sup;Kim, Woo-Jong;Kim, Hoi-OK
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.1 s.53
    • /
    • pp.88-96
    • /
    • 2009
  • This study proposes a wireless measurement system that is a new safety management system by using an FBG sensor and a PDA. The sensor part has many advantages of implementing a wireless measurement system, and the study emploies an FBG-LVDT sensor, FBG-STRAIN sensor, FBG-TEMP sensor, and FBG-ACC sensor, using FBG sensors. Also, the study show a configuration of a signal process system for operating a wireless transmission system of FBG sensors applied to the signal process system, and engrafted the cutting edge information technology industry in order to display from a remote distance using a PDA. In order to verify the applicability of the developed FBG sensors and wireless measurement monitoring system to the field, their accuracy, and usability, the study has conducted a static and dynamic test to a bridge in the field. The study made an assessment of service for the vibration of the bridge by applying dynamic data measured by an FBG-LVDT sensor and FBG-ACC sensor to Meister's curve and prepared methods for assessing the vibration of the bridge by proposing a standard of vibration limitation given the service of vibration of the bridge. As a follow up for this study, it would be necessary to set up an overall model for the standard of service assessment established in this study.

Development of a Customized Beacon Equipped with a Strain Gauge Sensor to Detect Deformation of Structure Displacement (구조물의 변위 변형 감지를 위한 변형률 센서를 장착한 커스터마이징 비콘 개발)

  • Kim, Junkyeong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.5
    • /
    • pp.1-7
    • /
    • 2021
  • This study attempted to detect possible collapse and fire accidents in facilities for disaster monitoring of large facilities, and to develop a customized beacon to recognize the internal situation of an IoT-based facility when a disaster occurs. In the case of data measurement using the existing strain gauge sensor, the strain gauge sensor was connected by wire to measure it, but this study changed it to wireless so that the presence and absence of structural deformation can be monitored in real time. In this process, in order to use the Wheatstone bridge, a strain sensor module that can be connected to a customized beacon was manufactured, and a system configuration was conducted to remotely check the measurement data. To verify measurement data, 10 customized beacons and 2 gateways were installed on the 15th floor of the Advanced Institue of Convergence Technology, and as a result of analysis of measurement data, it was confirmed that the strain data values were distributed between 7 and 8.

Development of a Sensor System to Measure Real Time Vibro Displacement of Civil Structure (레이저 센서를 이용한 구조물의 변위 측정 장비 개발)

  • O, Heung-Il;Kim, Hui-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.823-825
    • /
    • 2003
  • A sensor system was designed to measure real time vibro displacement of civil structure. The He-Ne laser is used for the displacement measuring method, because it guarantees short time stabilization, long time output power stability. Also, it guarantees simple maintenances and repairs under actual using condition. The line CCD image sensor(Tcd-142d) is used to detect the displacement of Ne-Ne laser responding to the vibro of civil structure. For accurate measurement and comparison, CDP-50 is used. Usually CDF-50 (Strain type displacement device) is used for the standard correction device of optical measurement equipments. The data processing part is consists of Optical sensor part, Wireless data transmission device, DAQp-1200, and LapView program. The displacement data of vibro from optical sensor part inputted to wireless data transmission device and then transmitted to DAQp-1200 in main control room. DAQp-1200 performs A/D conversion for the receiving data. After that the converted data inputted to computer system using LapView program for user display. The significance of this paper is to develope a convenient, accurate and lost saving real time displacement measurement system for the civil structure.

  • PDF

Investigation of smart multifunctional optical sensor platform and its application in optical sensor networks

  • Pang, C.;Yu, M.;Gupta, A.K.;Bryden, K.M.
    • Smart Structures and Systems
    • /
    • v.12 no.1
    • /
    • pp.23-39
    • /
    • 2013
  • In this article, a smart multifunctional optical system-on-a-chip (SOC) sensor platform is presented and its application for fiber Bragg grating (FBG) sensor interrogation in optical sensor networks is investigated. The smart SOC sensor platform consists of a superluminescent diode as a broadband source, a tunable microelectromechanical system (MEMS) based Fabry-P$\acute{e}$rot filter, photodetectors, and an integrated microcontroller for data acquisition, processing, and communication. Integrated with a wireless sensor network (WSN) module in a compact package, a smart optical sensor node is developed. The smart multifunctional sensor platform has the capability of interrogating different types of optical fiber sensors, including Fabry-P$\acute{e}$rot sensors and Bragg grating sensors. As a case study, the smart optical sensor platform is demonstrated to interrogate multiplexed FBG strain sensors. A time domain signal processing method is used to obtain the Bragg wavelength shift of two FBG strain sensors through sweeping the MEMS tunable Fabry-P$\acute{e}$rot filter. A tuning range of 46 nm and a tuning speed of 10 Hz are achieved. The smart optical sensor platform will open doors to many applications that require high performance optical WSNs.