• 제목/요약/키워드: wireless smart sensor network

검색결과 264건 처리시간 0.023초

Design of In-situ Self-diagnosable Smart Controller for Integrated Algae Monitoring System

  • Lee, Sung Hwa;Mariappan, Vinayagam;Won, Dong Chan;Shin, Jaekwon;Yang, Seungyoun
    • International Journal of Advanced Culture Technology
    • /
    • 제5권1호
    • /
    • pp.64-69
    • /
    • 2017
  • The rapid growth of algae occurs can induce the algae bloom when nutrients are supplied from anthropogenic sources such as fertilizer, animal waste or sewage in runoff the water currents or upwelling naturally. The algae blooms creates the human health problem in the environment as well as in the water resource managers including hypoxic dead zones and harmful toxins and pose challenges to water treatment systems. The algal blooms in the source water in water treatment systems affects the drinking water taste & odor while clogging or damaging filtration systems and putting a strain on the systems designed to remove algal toxins from the source water. This paper propose the emerging In-Situ self-diagnosable smart algae sensing device with wireless connectivity for smart remote monitoring and control. In this research, we developed the In-Site Algae diagnosable sensing device with wireless sensor network (WSN) connectivity with Optical Biological Sensor and environmental sensor to monitor the water treatment systems. The proposed system emulated in real-time on the water treatment plant and functional evaluation parameters are presented as part of the conceptual proof to the proposed research.

Improvement of CH selection of WSN Protocol

  • Lee, WooSuk;Jung, Kye-Dong;Lee, Jong-Yong
    • International journal of advanced smart convergence
    • /
    • 제6권3호
    • /
    • pp.53-58
    • /
    • 2017
  • A WSN (Wireless Sensor Network) is a network that is composed of wireless sensor nodes. There is no restriction on the place where it can be installed because it is composed wirelessly. Instead, sensor nodes have limited energy. Therefore, to use the network for a long time, energy consumption should be minimized. Several protocols have been proposed to minimize energy consumption, and the typical protocol is the LEACH protocol. The LEACH protocol is a cluster-based protocol that minimizes energy consumption by dividing the sensor field into clusters. Depending on how you organize the clusters of sensor field, network lifetimes may increase or decrease. In this paper, we will improve the network lifetime by improving the cluster head selection method in LEACH Protocol.

Symptoms-Based Power-Efficient Communication Scheme in WBSN

  • Sasi, Juniven Isin D.;Yang, Hyunho
    • 스마트미디어저널
    • /
    • 제3권1호
    • /
    • pp.28-32
    • /
    • 2014
  • It is practical nowadays to automate data recording in order to prevent loss and tampering of records. There are existing technologies that satisfy this needs and one of them is wireless sensor networks (WSN). Wireless body sensor networks (WBSN) are wireless networks and information-processing systems which are deployed to monitor medical condition of patients. In terms of performance, WBSNs are restricted by energy, and communication between nodes. In this paper, we focused in improving the performance of communication to achieve less energy consumption and to save power. The main idea of this paper is to prioritize nodes that exhibit a sudden change of vital signs that could put the patient at risk. Cluster head is the main focus of this study in order to be effective; its main role is to check the sent data of the patient that exceeds threshold then transfer to the sink node. The proposed scheme implemented added a time-based protocol to sleep/wakeup mechanism for the sensor nodes. We seek to achieve a low energy consumption and significant throughput in this study.

BRAIN: A bivariate data-driven approach to damage detection in multi-scale wireless sensor networks

  • Kijewski-Correa, T.;Su, S.
    • Smart Structures and Systems
    • /
    • 제5권4호
    • /
    • pp.415-426
    • /
    • 2009
  • This study focuses on the concept of multi-scale wireless sensor networks for damage detection in civil infrastructure systems by first over viewing the general network philosophy and attributes in the areas of data acquisition, data reduction, assessment and decision making. The data acquisition aspect includes a scalable wireless sensor network acquiring acceleration and strain data, triggered using a Restricted Input Network Activation scheme (RINAS) that extends network lifetime and reduces the size of the requisite undamaged reference pool. Major emphasis is given in this study to data reduction and assessment aspects that enable a decentralized approach operating within the hardware and power constraints of wireless sensor networks to avoid issues associated with packet loss, synchronization and latency. After over viewing various models for data reduction, the concept of a data-driven Bivariate Regressive Adaptive INdex (BRAIN) for damage detection is presented. Subsequent examples using experimental and simulated data verify two major hypotheses related to the BRAIN concept: (i) data-driven damage metrics are more robust and reliable than their counterparts and (ii) the use of heterogeneous sensing enhances overall detection capability of such data-driven damage metrics.

스마트 의료 환경에서 이기종 네트워크 간 연동 기술 설계 (Design of Interworking Technology for Heterogeneous Medical Device Networks in Smart Healthcare Environments)

  • 김민진;이승한;김재수
    • 디지털산업정보학회논문지
    • /
    • 제11권4호
    • /
    • pp.25-31
    • /
    • 2015
  • Smart healthcare environments which merge medical and IT technology are getting ready for the third generation centering EHR from current second generation. As a basic technology for the introduction and activation of EHR systems it requires heterogeneous network interworking techniques between various wired and wireless medical devices. Interworking technology for heterogeneous network among various medical devices is needed to introduce EHR system. The heterogeneous network interworking technology is needed for construction of a reliable data system to convert each of unstructured data into structured data. Therefore, in this paper, we identify the domestic and international trends of smart medical field and analyze the characteristics of wired and wireless communication technology that is used in a heterogeneous network. and also suggest requirements needed for interworking technology and provide interworking technology based on them. we expect that proposed method which is designed for smart healthcare environments would provide a basic architecture needed for third smart medical technology generation.

차세대 고속철도(동력분산식)에 적용할 스마트센서 사례 연구 (Case Studies on Smart Sensor Application for the Next Generation High-Speed EMU)

  • 장덕진;강송희;송달호
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 춘계학술대회 논문집
    • /
    • pp.1995-2005
    • /
    • 2008
  • Recently, the smart sensors and USN (Ubiquitous Sensor Network) technologies are emerging. Smart sensors add the capability of storing local temporary data, processing instant operations, transmitting information outward, to the simple sensing devices. The USN is a wireless network of sensor/smart sensors that can collect data anywhere anytime and exchange the data within the network. In this research, case studies are performed on the smart sensors and USN applications. The cases were grouped in four categories, domestic private, domestic public, foreign private, and foreign public. Based on that survey, promising applications will be proposed and developed to be implemented to the next generation high-speed EMU.

  • PDF

Implementation of Bistatic Backscatter Wireless Communication System Using Ambient Wi-Fi Signals

  • Kim, Young-Han;Ahn, Hyun-Seok;Yoon, Changseok;Lim, Yongseok;Lim, Seung-ok;Yoon, Myung-Hyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권2호
    • /
    • pp.1250-1264
    • /
    • 2017
  • This paper presents the architecture design, implement, experimental validation of a bistatic backscatter wireless communication system in Wi-Fi network. The operating principle is to communicate a tag's data by detecting the power level of the power modulated Wi-Fi packets to be reflected or absorbed by backscatter tag, in interconnecting with Wi-Fi device and Wi-Fi AP. This system is able to provide the identification and sensor data of tag on the internet connectivity without requiring extra device for reading data, because this uses an existing Wi-Fi AP infrastructure. The backscatter tag consists of Wi-Fi energy harvesting part and a backscatter transmitter/a power-detecting receiver part. This tag can operate by harvesting and generating energy from Wi-Fi signal power. Wi-Fi device decodes information of the tag data by recognizing the power level of the backscattered Wi-Fi packets. Wi-Fi device receives the backscattered Wi-Fi packets and generates the tag's data pattern in the time-series of channel state information (CSI) values. We believe that this system can be achieved wireless connectivity for ultra- low-power IoT and wearable device.

첨단주택 내에서 움직임 감지 센서 노드의 수명 예측 모델 분석 (Analysis of Lifetime Estmation Model of Motion Detection Sensor Nodes in Smart House)

  • 이민구;박용국;정경권;유준재;성하경
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2010년도 춘계학술대회
    • /
    • pp.860-863
    • /
    • 2010
  • 센서 네트워크는 무선 네트워킹 기능이 있는 작고, 독립적인 장치이다. 실제 응용에서의 적응성을 향상시키기 위해서 에너지 소모를 최소화하는 것이 중요한 문제 중의 하나이다. 그러므로 무선 센서 네트워크를 평가하기 위해서는 정확한 에너지 모델이 필요하다. 센서 노드의 수명을 추정하기 위해 TinyOS로 동작하는 Telosb 플래폼 기반의 센서 노드의 에너지 특성을 측정하였다. 제안한 모델을 사용하면 배터리로 구동되는 센서 노드는 1시간 동안 10번 움직임을 감지한다면 약 6.925개월을 사용할 수 있다.

  • PDF

무선 센서 네트워크를 위한 인터넷 시각 동기 프로토콜 확장 (Network Time Protocol Extension for Wireless Sensor Networks)

  • 황소영
    • 한국정보통신학회논문지
    • /
    • 제15권12호
    • /
    • pp.2563-2567
    • /
    • 2011
  • 스마트 센서 및 임베디드 시스템, 저전력/저가격의 무선 통신, 애드 혹 (ad hoc) 네트워크, MEMS (Micro-Electro-Mechanical System) 기술의 발달은 센서 네트워크의 개발을 가능하게 하였다. 센서 네트워크에서 이동체 트래킹, 상태 정보 관리 및 이벤트 순서화와 같은 기본적인 응용 서비스를 제공하기 위해서 시각 정보 제공 및 시각 동기는 기본적으로 요구되는 요소 중 하나이다. 제한된 자원과 에너지를 갖는 센서 네트워크의 특성을 고려하여 다양한 시각 동기 기법이 제시되어 왔으나, 시각 표현 방법에 대한 고려를 한 사례는 거의 없는 실정이다. UTC TOD와 같은 전역 시각 표현 방식은 센서 네트워크의 응용을 위해 매우 유용한 방식으로 볼 수 있다. 본 논문에서는 인터넷 시각 동기 프로토콜 확장을 통해 센서 네트워크에서 전역 시각 정보를 관리할 수 있는 기법을 제시하였다.

Electric Field Energy Harvesting Powered Wireless Sensors for Smart Grid

  • Chang, Keun-Su;Kang, Sung-Muk;Park, Kyung-Jin;Shin, Seung-Hwan;Kim, Hyeong-Seok;Kim, Ho-Seong
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권1호
    • /
    • pp.75-80
    • /
    • 2012
  • In this paper, a new energy harvesting technology using stray electric field of an electric power line is presented. It is found that energy can be harvested and stored in the storage capacitor that is connected to a cylindrical aluminum foil wrapped around a commercial insulated 220 V power line. The average current flowing into 47 ${\mu}F$ storage capacitor is about 4.53 ${\mu}A$ with 60 cm long cylindrical aluminum foil, and it is possible to operate wireless sensor node to transmit RF data every 42 seconds. The harvested average power is about 47 ${\mu}W$ in this case. Since the energy can be harvested without removing insulating sheath, it is believed that the proposed harvesting technology can be applied to power the sensor nodes in wireless ubiquitous sensor network and smart grid system.