• Title/Summary/Keyword: wireless signal transmission

Search Result 508, Processing Time 0.028 seconds

Wireless Data Transmission Algorithm Using Cyclic Redundancy Check and High Frequency of Audible Range (가청 주파수 영역의 고주파와 순환 중복 검사를 이용한 무선 데이터 전송 알고리즘)

  • Chung, Myoungbeom
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.4 no.9
    • /
    • pp.321-326
    • /
    • 2015
  • In this paper, we proposed an algorithm which could transmit reliable data between smart devices by using inaudible high frequency of audible frequency range and cyclic redundancy check method. The proposed method uses 18 kHz~22 kHz as high frequency which inner speaker of smart device can make a sound in audible frequency range (20 Hz~22 kHz). To increase transmission quantity of data, we send mixed various frequencies at high frequency range 1 (18.0 kHz~21.2 kHz). At the same time, to increase accuracy of transmission data, we send some mixed frequencies at high frequency range 2 (21.2 kHz~22.0 kHz) as checksum. We did experiments about data transmission between smart devices by using the proposed method to confirm data transmission speed and accuracy of the proposed method. From the experiments, we showed that the proposed method could transmit 32 bits data in 235 ms, the transmission success rate was 99.47%, and error detection by using cyclic redundancy check was 0.53%. Therefore, the proposed method will be a useful for wireless transmission technology between smart devices.

Priority Based Multi-Channel MAC Protocol for Real-Time Monitoring of Weapon Flight Test Using WSNs

  • Min, Joonki;Kim, Joo-Kyoung;Kwon, Youngmi;Lee, Yong-Jae
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.18-27
    • /
    • 2013
  • Real-time monitoring is one of the prime necessities in a weapon flight test that is required for the efficient and timely collection of large amounts of high-rate sampled data acquired by an event-trigger. The wireless sensor network is a good candidate to resolve this requirement, especially considering the inhospitable environment of a weapon flight test. In this paper, we propose a priority based multi-channel MAC protocol with CSMA/CA over a single radio for a real-time monitoring of a weapon flight test. Multi-channel transmissions of nodes can improve the network performance in wireless sensor networks. Our proposed MAC protocol has two operation modes: Normal mode and Priority Mode. In the normal mode, the node exploits the normal CSMA/CA mechanism. In the priority mode, the node has one of three grades - Class A, B, and C. The node uses a different CSMA/CA mechanism according to its grade that is determined by a signal level. High grade nodes can exploit more channels and lower backoff exponents than low ones, which allow high grade nodes to obtain more transmission opportunities. In addition, it can guarantee successful transmission of important data generated by high grade nodes. Simulation results show that the proposed MAC exhibits excellent performance in an event-triggered real-time application.

Adaptive Multiuser MIMO Transmission in Wireless Systems with Cooperating Cells (셀간 협력 통신 기반의 적응적 다중 사용자 다중 안테나 전송 기법)

  • Lee, Jin-Hee;Ko, Young-Chai
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.2
    • /
    • pp.102-107
    • /
    • 2011
  • In multicell wireless systems with insufficient frequency reuse, user transmission will suffer other-cell interference (OCI). Cell cooperation is an effective way to mitigate OCI and increase the system sum rate. An adaptive scheme for serving one user in each cell was proposed in [1]. In this paper, we generalize that scheme by serving two users in each cell with adaptive zeroforcing beamforming (ZF) strategies. Based on our derived statistics of the signal-to-noise plus interference ratios, we choose the scheme to maximize the total ergodic sum-rate based on user locations. Through the numerical examples, we show that the total system sum rate can be improved by selecting appropriate transmitting strategy adaptively. As a result, our proposed system can explore spatial multiplexing gain without additional power and thus improves total system sum rate significantly.

An Optimal Power-Throughput Tradeoff Study for MIMO Fading Ad-Hoc Networks

  • Yousefi'zadeh, Homayoun;Jafarkhani, Hamid
    • Journal of Communications and Networks
    • /
    • v.12 no.4
    • /
    • pp.334-345
    • /
    • 2010
  • In this paper, we study optimal tradeoffs of achievable throughput versus consumed power in wireless ad-hoc networks formed by a collection of multiple antenna nodes. Relying on adaptive modulation and/or dynamic channel coding rate allocation techniques for multiple antenna systems, we examine the maximization of throughput under power constraints as well as the minimization of transmission power under throughput constraints. In our examination, we also consider the impacts of enforcing quality of service requirements expressed in the form of channel coding block loss constraints. In order to properly model temporally correlated loss observed in fading wireless channels, we propose the use of finite-state Markov chains. Details of fading statistics of signal-to-interference-noise ratio, an important indicator of transmission quality, are presented. Further, we objectively inspect complexity versus accuracy tradeoff of solving our proposed optimization problems at a global as oppose to a local topology level. Our numerical simulations profile and compare the performance of a variety of scenarios for a number of sample network topologies.

Design and Implementation of Wireless Intelligent Controller for Micro-Inverter in Solar Power Systems (태양광 발전시스템에서 사용하는 마이크로인버터용 무선지능형제어기 설계 및 구현)

  • Han, Seongtaek
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.15 no.4
    • /
    • pp.9-17
    • /
    • 2019
  • Sun power generation systems which use large capacity centralized inverters have loss of power generation due to cloud and building shadows, pollution, cell deterioration, etc. To minimize loss of power generation, decentralized solar power systems using multiple micro-inverters are being proposed as an alternative. A distributed solar power system consisting of a system-connected system uses power line communication to collect data from the micro-inverters. Power line communication has the advantage of using power lines without separate lines for data transmission, but in distributed solar power generation systems that use a large number of micro-inverters, the bit error rate is less reliable due to the phenomenon caused by limited transmission power, high load interference and noise, variable signal attenuation, and impedance characteristics. So we proposed wireless intelligent controller for micro-inverter that is used to build distributed solar power systems. and we design and implement that. Further, the proposed wireless intelligent controller for micro-inverter was used to establish a small-volume solar power plant to check its function and operation.

A Study on the performance improvement of CSMA in the distributed wireless communication network (분산 무선통신망에서 CSMA 성능 개선에 관한 연구)

  • 조병록;최병진;박병철
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.4
    • /
    • pp.605-613
    • /
    • 1994
  • In this paper, we evaluate performance of multiple access for distributed wireless communication network by CSMA protocol. It is envident that the existence of hidden node in an environment degrades the performance of CSMA. In order to improve performance due to the problem of hidden node, the previous paper used random multiple access protocols a as such as ISMA, BTMA, BCMA. In this paper, We propose a protocol that we can improve performance by allowing node to sense the carrier of any other transmission on the channel in the distributed wireless communication networks The probability of transmission success was obtained by steady stats analysis under given assumptions. We confirmed that hidden node problem be virtually elimated by using a new protocol.

  • PDF

Precoded OFDMA with Superimposed Pilots

  • Kim, Sung-Hwan;Jung, Sung-Yoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.11C
    • /
    • pp.1059-1066
    • /
    • 2009
  • In this paper, we propose the precoder with superimposed pilots for orthogonal frequency-division multiple access (OFDMA) systems in order to enhance the transmission efficiency of the system and reduce peak-to-average power ratio (PAPR) which is the problem in OFDMA uplink. In wireless communication systems, the way to improve transmission efficiency is 1) to reduce bit error rate (BER) or 2) to increase data rate. In the proposed scheme, we design the precoder and superimposed pilots in the transmitter and use them in the receiver for increasing data rate, caused by the saved transmission bandwidth thanks to the superimposed pilots. In addition, we improve BER performance with the help of the frequency diversity gain caused by precoding. Also using superimposed pilots, we enhance the PAPR performance by increasing the average output power of the signal.

Implementation of An 1.5Gbit/s Wireless Data Transmission System at 300GHz Band (300GHz 대역 1.5Gbit/s 무선 데이터 전송 시스템 구현)

  • Lee, Won-Hui;Chung, Tae-Jin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.2
    • /
    • pp.1-6
    • /
    • 2011
  • In this paper, an 1.5Gbit/s wireless data transmission system using the carrier frequency of 300 GHz band was implemented. The RF front-end was composed of schottky diode sub-harmonic mixer, frequency tripler, and horn antennas for transmitter and receiver, respectively. The LO frequencies of sub-harmonic mixer are 150GHz for transmit chain and 156GHz for receive chain. The ASK(Amplitude Shift Keying) modulation was used in the transmitter and the envelope detection method was used in the heterodyne receiver. The conversion loss of sub-harmonic mixer and implementation system loss were measured to be 9.8dB and 1.2dB, respectively. The 1.5Gbit/s video signal with HD-SDI format was transmitted over wireless distance of 40cm without optical lens(4.2m with optical lens) and displayed on HDTV at the transmitted average output power of $20{\mu}W$.

Design and evaluation of wireless sensor network routing protocolfor home healthcare (홈 헬스케어를 위한 무선센서네트워크 라우팅 프로토콜 디자인 및 평가)

  • Lee, Seung-Chul;Seo, Yong-Su;Kwon, Tae-Ha;Chung, Wan-Young
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.297-305
    • /
    • 2010
  • A home healthcare system based wireless sensor network, which can continuously monitor and manage the elderly's electrocardiogram(ECG) signal at any space at home without space limit is proposed. The communication coverage of wireless network is expended by multi-hop wireless sensor network. In order to send the elderly's ECG data wirelessly, a small size ECG sensor node was designed to forward the ECG data over multi-hop relay network. The packet acquired by mobile ECG node is transmitted through wireless intermediate nodes to base station for analyzing the packet reception rate. Modified minimum cost forwarding(MMCF) protocol and flooding protocol are designed and implemented to check the transmission efficiency of a packet in a wireless sensor network. The developed MMCF protocol shows an advantage of high reception rate by reduced network traffic.

Throughput Analysis Based on Collision Probability in 802.11 Networks (802.11 네트워크의 충돌확률 기반 성능 분석)

  • Jin, Hyun-Joon;Song, Myong-Lyol
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.2
    • /
    • pp.93-100
    • /
    • 2014
  • IEEE 802.11 Wireless LAN Medium Access Control(MAC) supports two transmission methods, a DCF basic and a RTS/CTS in contention-based access. Even though the RTS/CTS method has been optionally introduced to solve the hidden terminal problem, it is able to produce better performance in some network environments than the basic transmission method. In this paper, the collision probability of wireless channel is mathematically analyzed and applied to measure network throughput using real transmission parameters so that a reference value between throughputs of two methods is obtained. We also confirmed that control signal rates affect overall network throughput and evaluated network throughputs considering collision probability, number of stations, and contention window size of Backoff between two methods respectively.