DOI QR코드

DOI QR Code

Wireless Data Transmission Algorithm Using Cyclic Redundancy Check and High Frequency of Audible Range

가청 주파수 영역의 고주파와 순환 중복 검사를 이용한 무선 데이터 전송 알고리즘

  • 정명범 (성결대학교 컴퓨터학부)
  • Received : 2015.08.03
  • Accepted : 2015.09.02
  • Published : 2015.09.30

Abstract

In this paper, we proposed an algorithm which could transmit reliable data between smart devices by using inaudible high frequency of audible frequency range and cyclic redundancy check method. The proposed method uses 18 kHz~22 kHz as high frequency which inner speaker of smart device can make a sound in audible frequency range (20 Hz~22 kHz). To increase transmission quantity of data, we send mixed various frequencies at high frequency range 1 (18.0 kHz~21.2 kHz). At the same time, to increase accuracy of transmission data, we send some mixed frequencies at high frequency range 2 (21.2 kHz~22.0 kHz) as checksum. We did experiments about data transmission between smart devices by using the proposed method to confirm data transmission speed and accuracy of the proposed method. From the experiments, we showed that the proposed method could transmit 32 bits data in 235 ms, the transmission success rate was 99.47%, and error detection by using cyclic redundancy check was 0.53%. Therefore, the proposed method will be a useful for wireless transmission technology between smart devices.

본 논문에서는 가청 주파수 영역 중 사람들에게 거의 들리지 않는 고주파와 순환 중복 검사 기법을 이용하여 스마트 기기 간의 신뢰성 있는 데이터를 무선으로 전송하는 알고리즘을 제안한다. 제안 알고리즘은 스마트 기기의 내장 스피커에서 출력할 수 있는 가청 주파수 영역(20 Hz~22 kHz) 중 고주파 영역인 18 kHz~22 kHz를 사용한다. 이때 데이터의 전송량을 높이기 위해 고주파 영역 1(18.0 kHz~21.2 kHz)에서 여러 개의 주파수를 혼합하여 전달하며, 이와 동시에 전송 데이터의 정확성을 높이기 위해 고주파 영역 2(21.2 kHz~22.0 kHz)에서 순환 중복 검사를 위한 체크섬을 전달한다. 제안 방법의 데이터 전송 속도와 정확성을 확인하기 위해 스마트 북과 스마트 기기 간에 데이터 전달 실험을 하였다. 그 결과 평균 235 ms에 32 bits 데이터를 전송할 수 있었으며, 전송 성공률은 99.47%, 그리고 순환 중복 검사에 의한 에러 검출률은 0.53%인 것을 확인하였다. 따라서 제안 방법은 스마트 기기 간에 무선으로 데이터를 전송할 수 있는 유용한 기술이 될 것이다.

Keywords

References

  1. C. Y. Leong, K. C. Ong, K. K. Tan, and O. P. Gan, "Near field communication and bluetooth bridge system for mobile commerce," in Proceedings of the 2006 IEEE International Conference on Industrial Informatics, Singapore, pp.50-55, 2006.
  2. S. Jung, U. Lee, A. Chang, D. K. Cho, and M. Gerla, "Bluetorrent: Cooperative content sharing for bluetooth users," Pervasive and Mobile Computing, Vol.3, No.6, pp.609-634, 2007. https://doi.org/10.1016/j.pmcj.2007.06.003
  3. H. Yoon and J. W. Kim, "Collaborative streaming-based media content sharing in WiFi-enabled home networks," IEEE Transactions on Consumer Electronics, Vol.56, No.4, pp.2193-2200, 2010. https://doi.org/10.1109/TCE.2010.5681090
  4. C. Eunjeong, "Kakaotalk, a mobile social platform pioneer," SERI Quarterly, Vol.6, No.1, pp.63-69, 2013.
  5. K. Church and R. Oliveira, "What's up with whatsapp?: comparing mobile instant messaging behaviors with traditional SMS," in Proceedings of the 15th International Conference on Human-computer Interaction with Mobile Devices and Services, Munich, Germany, pp.352-361, 2013.
  6. J. D. Rachid, "Global communication apps," Network Journal, Vol.21, No.1, pp.61, 2014.
  7. V. Coskun, B. Ozdenizci, and K. Ok, "A survey on near field communication (NFC) technology," Wireless personal communications, Vol.71, No.3, pp.2259-2294, 2013. https://doi.org/10.1007/s11277-012-0935-5
  8. A. Kumar, A. Arora, and C. J. Islam, "Near field communication (NFC): an expertise primer," Discovery, Vol.2, No.4, pp.20-25, 2012. https://doi.org/10.1158/2159-8290.CD-RW2012-185
  9. R. Ballagas, J. Borchers, M. Rohs, and J. G. Sheridan, "The smart phone: a ubiquitous input device," Pervasive Computing, IEEE, Vol.5, No.1, pp.70-77, 2006. https://doi.org/10.1109/MPRV.2006.18
  10. M. Gang, "Bluetooth Chat System Based on Android Platform," Information Security and Technology, Vol.6, pp.28, 2012.
  11. T. Weiss, J. Hillenbrand, A. Krohn, and F. K. Jondral, "Efficient signaling of spectral resources in spectrum pooling systems," in Proceeding of the 10th Symposium on Communications and Vehicular Technology, Benelux, 2003.
  12. V. Filonenko, C. Cullen, and J. D. Carswell, "Indoor positioning for smartphones using asynchronous ultrasound trilateration," ISPRS International Journal of Geo- Information, Vol.2, No.3, pp.598-620, 2013. https://doi.org/10.3390/ijgi2030598
  13. B. Thiel, K. Kloch, and P. Lukowicz, "Sound-based proximity detection with mobile phones," in Proceedings of the Third International Workshop on Sensing Applications on Mobile Phones, Toronto, Canada, pp.4, 2012,
  14. P. Bihler, P. Imhoff, and A. B. Cremers, "SmartGuide-A smartphone museum guide with ultrasound control," Procedia Computer Science, Vol.5, pp.586-592, 2011. https://doi.org/10.1016/j.procs.2011.07.076
  15. J. B. Kim, J. E. Song, and M. K. Lee, "Authentication of a smart phone user using audio frequency analysis," Journal of the Korea Institute of Information Security and Cryptology, Vol.22, No.2, pp.327-336, 2012.
  16. M. B. Chung and H. S. Choo, "Near wireless-control technology between smart devices using inaudible highfrequencies," Multimedia Tools and Applications, Vol.74, No.15, pp.5955-5971, 2015. https://doi.org/10.1007/s11042-014-1901-x
  17. R. J. I. Marks, "Advanced topics in Shannon sampling and interpolation theory," Springer Science & Business Media, 2012.
  18. E. Bidet, D. Castelain, C. Joanblanq, and P. Senn, "A fast single-chip implementation of 8192 complex point FFT," IEEE Journal of Solid-State Circuits, Vol.30, No.3, pp. 300-305, 1995. https://doi.org/10.1109/4.364445
  19. R. M. Jiang, "An area-efficient FFT architecture for OFDM digital video broadcasting," IEEE Transactions on Consumer Electronics, Vol.53, No.4, pp.1322-1326, 2007. https://doi.org/10.1109/TCE.2007.4429219
  20. J. S. Chitode, "Digital Communication," Technical Publications, 2009.
  21. L. Xue, "Efficient Mapping of Fast Fourier Transform on the Cyclops-64 Multithreaded Architecture," ProQuest, 2007.