• Title/Summary/Keyword: wireless sensors

Search Result 1,141, Processing Time 0.023 seconds

Mobile Sensor Relocation to Prolong the Lifetime of Wireless Sensor Networks (무선 센서망의 수명 연장을 위한 센서 재배치)

  • Yoo, Young-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.4B
    • /
    • pp.338-348
    • /
    • 2009
  • The Wireless Sensor Network (WSN) has recently attracted considerable attention due to the low price and ease to deploy it. In particular, in a hostile or harsh regions where sensors cannot be deployed manually, WSNs can be established just by dropping sensors from the air. In this case, however, most likely sensors are not placed at optimal positions, although the location of sensors does have a drastic impact on the WSN performance. Moreover, randomized deployment algorithm can leave holes in terms of coverage in the sensing area. This paper proposes a sensor relocation scheme where mobile sensors move to patch up the holes by appropriate coverage. Simulation results show that the proposed algorithm outperforms prior existing schemes in terms of coverage and lifespan of WSNs.

Development of Monitoring System for Safety Operation of Crane (크레인 안전 운전을 위한 모니터링 시스템 개발)

  • Bae, Young-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.11
    • /
    • pp.1305-1310
    • /
    • 2014
  • In this paper, the new integrated crane monitoring system that complemented the point at issue for existing crane monitoring system is implemented. The Implementing monitoring system based on wireless communication system, consist of a measuring system of total load currents of main circuit breaker, a temperature and vibration measuring system with temperature sensors and vibration sensors for monitoring an oil and bearing of a main decelerator, a temperature measuring system with temperature sensors of a main motor bearing, and sensors for fire monitoring of an entire electrical space. The measured data from these sensors transmit main controller which is located in external location. Then the Integrating monitoring system is implemented and is performed the performance test to performing diagnosis of motors of a crane.

Study of direction acquisition using signal sensitivity wireless LAN (무선랜 신호감도의 인식센서화를 이용한 방향 인식 연구)

  • Sim, Gyuchang;Lim, Seung-Cheol
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.5
    • /
    • pp.161-167
    • /
    • 2012
  • Portable devices such as smartphones with built-in wireless LAN to the prevalence of anyone using. But the wireless Internet connection and positioning services are limited to high-quality wireless service, they may not be available. Thus, wireless LAN infrared sensor in the same way as with angry alternative way wireless capabilities of the application automatically identify the location of the Sensor application as an alternative method is proposed. Thus, wireless LAN, such as infrared sensors and other alternzative methods of wireless features in a way where the application can recognize and automatically recognize the sensor application as an alternative method is proposed. Sensor is signals between wireless LAN and access points using the sensitivity, WLAN antenna with omni-directional signal output operation of the sensor is assumed to be recognize this by putting a direction to obtain through the proposed algorithm, Sensors such as photo-coupler without direct recognition sensor, wireless LAN and access points, the same function as the connection between the sensitivity to perform its function was to utilizing.

Multi-scale wireless sensor node for health monitoring of civil infrastructure and mechanical systems

  • Taylor, Stuart G.;Farinholt, Kevin M.;Park, Gyuhae;Todd, Michael D.;Farrar, Charles R.
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.661-673
    • /
    • 2010
  • This paper presents recent developments in an extremely compact, wireless impedance sensor node (the WID3, $\underline{W}$ireless $\underline{I}$mpedance $\underline{D}$evice) for use in high-frequency impedance-based structural health monitoring (SHM), sensor diagnostics and validation, and low-frequency (< ~1 kHz) vibration data acquisition. The WID3 is equipped with an impedance chip that can resolve measurements up to 100 kHz, a frequency range ideal for many SHM applications. An integrated set of multiplexers allows the end user to monitor seven piezoelectric sensors from a single sensor node. The WID3 combines on-board processing using a microcontroller, data storage using flash memory, wireless communications capabilities, and a series of internal and external triggering options into a single package to realize a truly comprehensive, self-contained wireless active-sensor node for SHM applications. Furthermore, we recently extended the capability of this device by implementing low-frequency analog-to-digital and digital-to-analog converters so that the same device can measure structural vibration data. The compact sensor node collects relatively low-frequency acceleration measurements to estimate natural frequencies and operational deflection shapes, as well as relatively high-frequency impedance measurements to detect structural damage. Experimental results with application to SHM, sensor diagnostics and low-frequency vibration data acquisition are presented.

Boundary Node Detection in Wireless Sensor Network (무선 센서 네트워크의 경계노드 검출)

  • Kim, Youngkyun
    • The Journal of the Convergence on Culture Technology
    • /
    • v.4 no.4
    • /
    • pp.367-372
    • /
    • 2018
  • This paper proposed an algorithm that detects boundary nodes effectively in wireless sensor network. A boundary node is a sensor that lies on the border of network holes or the outer boundary of wireless sensor network. Proposed algorithm detects boundary nodes using only the position information of sensors. In addition, to improve detect performance, sensor computes the overlap area of nearest sensor first. Simulation is performed to validate the process of the proposed algorithm. In Simulation, several obstacles are placed and varying number of sensors in the range of 500~1500 are deployed in the area in order to reflect real world. The simulation results shows that proposed algorithm detects boundary nodes effectively that are located on the border of holes and the outer boundary of wireless sensor network.

Full-scale bridge expansion joint monitoring using a real-time wireless network

  • Pierredens Fils;Shinae Jang;Daisy Ren;Jiachen Wang;Song Han;Ramesh Malla
    • Structural Monitoring and Maintenance
    • /
    • v.9 no.4
    • /
    • pp.359-371
    • /
    • 2022
  • Bridges are critical to the civil engineering infrastructure network as they facilitate movement of people, the transportation of goods and services. Given the aging of bridge infrastructure, federal officials mandate visual inspections biennially to identify necessary repair actions which are time, cost, and labor-intensive. Additionally, the expansion joints of bridges are rarely monitored due to cost. However, expansion joints are critical as they absorb movement from thermal effects, loadings strains, impact, abutment settlement, and vehicle motion movement. Thus, the need to monitor bridge expansion joints efficiently, at a low cost, and wirelessly is desired. This paper addresses bridge joint monitoring needs to develop a cost-effective, real-time wireless system that can be validated in a full-scale bridge structure. To this end, a wireless expansion joint monitoring was developed using commercial-off-the-shelf (COTS) sensors. An in-service bridge was selected as a testbed to validate the performance of the developed system compared with traditional displacement sensor, LVDT, temperature and humidity sensors. The short-term monitoring campaign with the wireless sensor system with the internet protocol version 6 over the time slotted channel hopping mode of IEEE 802.15.4e (6TiSCH) network showed reliable results, providing high potential of the developed system for effective joint monitoring at a low cost.

Multi-sensor Data Fusion Using Weighting Method based on Event Frequency (다중센서 데이터 융합에서 이벤트 발생 빈도기반 가중치 부여)

  • Suh, Dong-Hyok;Ryu, Chang-Keun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.4
    • /
    • pp.581-587
    • /
    • 2011
  • A wireless sensor network needs to consist of multi-sensors in order to infer a high level of information on circumstances. Data fusion, in turn, is required to utilize the data collected from multi-sensors for the inference of information on circumstances. The current paper, based on Dempster-Shafter's evidence theory, proposes data fusion in a wireless sensor network with different weights assigned to different sensors. The frequency of events per sensor is the crucial element in calculating different weights of the data of circumstances that each sensor collects. Data fusion utilizing these different weights turns out to show remarkable difference in reliability, which makes it much easier to infer information on circumstances.

MSCT: AN EFFICIENT DATA COLLECTION HEURISTIC FOR WIRELESS SENSOR NETWORKS WITH LIMITED SENSOR MEMORY CAPACITY

  • Karakaya, Murat
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.9
    • /
    • pp.3396-3411
    • /
    • 2015
  • Sensors used in Wireless Sensor Networks (WSN) have mostly limited capacity which affects the performance of their applications. One of the data-gathering methods is to use mobile sinks to visit these sensors so that they can save their limited battery energies from forwarding data packages to static sinks. The main disadvantage of employing mobile sinks is the delay of data collection due to relative low speed of mobile sinks. Since sensors have very limited memory capacities, whenever a mobile sink is too late to visit a sensor, that sensor's memory would be full, which is called a 'memory overflow', and thus, needs to be purged, which causes loss of collected data. In this work, a method is proposed to generate mobile sink tours, such that the number of overflows and the amount of lost data are minimized. Moreover, the proposed method does not need either the sensor locations or sensor memory status in advance. Hence, the overhead stemmed from the information exchange of these requirements are avoided. The proposed method is compared with a previously published heuristic. The simulation experiment results show the success of the proposed method over the rival heuristic with respect to the considered metrics under various parameters.

Sector-based Charging Schedule in Rechargeable Wireless Sensor Networks

  • Alkhalidi, Sadam;Wang, Dong;Al-Marhabi, Zaid A. Ali
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.9
    • /
    • pp.4301-4319
    • /
    • 2017
  • Adopting mobile chargers (MC) in rechargeable wireless sensors network (R-WSN) to recharge sensors can increase network efficiency (e.g., reduce MC travel distance per tour, reduce MC effort, and prolong WSN lifetime). In this study, we propose a mechanism to split the sensing field into partitions that may be equally spaced but differ in distance to the base station. Moreover, we focus on minimizing the MC effort by providing a new charging mechanism called the sector-based charging schedule (SBCS), which works to dispatch the MC in charging trips to the sector that sends many charging requests and suggesting an efficient sensor-charging algorithm. Specifically, we first utilize the high ability of the BS to divide the R-WSN field into sectors then it select the cluster head for each sector to reduce the intra-node communication. Second, we formulate the charging productivity as NP-hard problem and then conduct experimental simulations to evaluate the performance of the proposed mechanism. An extensive comparison is performed with other mechanisms. Experimental results demonstrate that the SBCS mechanism can prolong the lifetime of R-WSNs by increasing the charging productivity about 20% and reducing the MC effort by about 30%.

User Identification and Entrance/Exit Detection System for Smart Home (지능형 홈을 위한 사용자 식별 및 출입 감지 시스템)

  • Lee, Seon-Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.3
    • /
    • pp.248-253
    • /
    • 2008
  • This paper presents a sensing system for smart home which can detect an location transition events such as entrance/exit of a member and identify the user in a group at the same time. The proposed system is compose of two sub-systems; a wireless sensor network system and a database server system. The wireless sensing system is designed as a star network where each of sensing modules with ultrasonic sensors and a Bluetooth RF module connect to a central receiver called Bluetooth access point. We propose a method to discriminate a user by measuring the height of the user. The differences in the height of users is a key feature for discrimination. At the same time, the each sensing module can recognize whether the user goes into or out a room by using two ultrasonic sensors. The server subsystem is a sort of data logging system which read the detected event from the access point and then write it into a database system. The database system could provide the location transition information to wide range of context-aware applications for smart home easily and conveniently. We evaluate the developed method with experiments for three subjects in a family with the installation of the developed system into a real house.