• Title/Summary/Keyword: wireless safety monitoring

Search Result 155, Processing Time 0.032 seconds

Petrochemical Plant Safety Management System based on Wireless Transmitter (무선 트랜스미터 기반의 석유화학 플랜트 안전관리 시스템)

  • Kang, Sung-Min;Park, Soo-Yeol;Yeo, Keum-Soo;Park, Jae-Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.6
    • /
    • pp.88-94
    • /
    • 2015
  • Large-scale petrochemical and power plants has increased demanting wireless technology for continuous monitoring. However, the current USN technologies, such as ZigBee and Bluetooth, are lackof reliability and security. Therefore, there is a strong need to apply a new wireless technology standard of the ISA. In this study, a petrochemicalplant safety management system based on the ISA wireless transmitter isdeveloped. ISA100.11a communication module and LTE communication module equippedwith an explosion-proof wireless transmitter are developed. A petrochemicalplant safety management system is built based on the IoT technologies. Thedeveloped system is verified through a wide range of testing and thus, on-siteapplicability is proved.

A Monitoring System for Telecommunication Tower Using Wireless Sensor Network (무선 센서 네트워크를 이용한 통신 철탑 모니터링 시스템에 관한 연구)

  • Roh, Sang Bong;Park, Sang Kyu
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.2
    • /
    • pp.136-143
    • /
    • 2013
  • In this paper, a monitoring system for telecommunication tower using wireless sensor network is presented. Although safety inspection could be judged by eyesight and calculating original design from now, not only this system can protect perils, estimating data exactly, but also it is effective to management. It is also economic because the system costs cheaper expenses for telecommunication tower of setting it once than for the tower of inspecting its safety regularly. This paper proves that the structure can be managed scientifically and efficiently, and the system contributes not only stabilized telecommunication services for users but reducing damages.

Development of Safety Monitoring System for Operating Railway Tunnel (운용중인 철도터널의 안전관리 시스템 시범구축)

  • Lee, Su-Hyung;Shin, Min-Ho;Kim, Hyun-Ki
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.73-78
    • /
    • 2008
  • There has been need for safety monitoring systems for the social infrastructures. These infrastructures are subject to degradation over time, reduced functionality, and loss of functionality as a result of factors such as a wide variety of installation environments, natural disasters, and nearby work. Therefore, it is necessary to perform appropriate inspections, repairs, and renovations to ensure safe and efficient maintenance and operation. This paper introduces the example of the development of the safety monitoring system for operating railway tunnel. Tunnel profile measuring system using laser beam, crack gauges, accelerometer and a pluviometer were implemented to monitor the safety of a deteriorated tunnel. The measured data were transferred through wireless network and analyzed in real time. The safety criteria for tunnel stabilities and train operations are also discussed.

  • PDF

Design of ICT-based Agricultural Safety Monitoring System Models

  • Kim, Insoo;Lee, Kyung-Suk;Chae, Hye-Seon;Seo, Min-Tea
    • Journal of the Ergonomics Society of Korea
    • /
    • v.35 no.4
    • /
    • pp.193-204
    • /
    • 2016
  • Objective: This study carried out base research to build an agricultural safety monitoring system through ICT convergence to reduce safety accidents and enhance welfare in life in the agricultural field. Background: The functions and values of rural villages as the space of living are recognized anew, but occupational accident rate due to farm work accidents is on the rise each year. Therefore, the seriousness of such a problem emerges. The convergence technology combining ICT is recently applied to industries overall, and therefore better services are offered. However, studies on ICT convergence has not yet been applied to the agricultural safety field. Method: This study identified ICT convergence service technology trends and representative serious accident types mainly occurring in agricultural activities. This study defined the major factors of farm work accidents and ICT to solve those accident factors including the sensor technology, wired/wireless communication technology and location information service, and applied them to prototype PCB for the development of an agricultural safety monitoring system. Results: This study proposed an emergency monitoring system for farmers and a harmful environment monitoring system. The ICT technology to prevent farm work accidents can be summarized as sensing technology, ICT and network technology and user interface technology. This study also designed PCB module configuration and situation judgment algorithm as basic research for proposed monitoring system development. Conclusion: The ICT-based agricultural safety monitoring research proposed in this study is expected to become the basis to build a future real time monitoring system, and also is expected to contribute to social safety and welfare service improvement for farmers. Application: The ICT convergence farmer accident prevention system will make contributions to the prevention of serious farm work accidents.

Implementation of a Vessel USN for Safety Monitoring System Based on ZigBee (선박 및 해양구조물의 안전 모니터링 정보 획득을 위한 ZigBee Sensor node 적용에 관한 연구)

  • Kim, Dae-Seok;Lee, Kyung-Ho;Lee, Jung-Min
    • Korean Journal of Computational Design and Engineering
    • /
    • v.19 no.2
    • /
    • pp.169-181
    • /
    • 2014
  • Recently ships and ocean platforms are becoming increasingly technological, unmanned, and huge. Maintenance and safety monitoring of these products is very important for safety reasons. Therefore, real-time monitoring of safety regions, such as the engine room, and hull structure, and environmental states, like fire and pressure of LNG tanks, is required for the sustainable ships. In this paper, a ZigBee-based wireless sensor network is suggested to monitor ships and ocean platforms effectively. However, this causes some telecommunication problems because these products are made of steel. To resolve this problem, we use the mesh networking of Zig-Bee that can monitor the regions and environmental states consistently. The telecommunication of such a monitoring system is tested on a real container ship and its performance is verified. The real-time monitoring results are displayed on the users' smart devices.

A Study on Safety System for Blasting Workers using Real Time Location System in the Shipyard (선박용 블라스팅 셀 내에서의 실시간 위치 추적 기술을 이용한 작업자 안전 시스템에 대한 연구)

  • Yun, Won-Jun;Ro, Young-Shic;Cho, Sang-Bock
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.6
    • /
    • pp.836-842
    • /
    • 2010
  • Safety system including location monitoring system for blasting workers was studied. Positioning performance of the location monitoring system was highly dependent on communication protocol and the number of access points in the blasting cell. RTLS(Real Time Location System) is an important technology to develop the location information of workers and variously used to enhance workers safety. Location monitoring system with Cell-ID and RSSI wireless communication technology was verified to have a proper positioning performance for the steel block application.

A Study on the Application of Real-time Environment Monitoring System in Underground Mines using Zigbee Technology (지그비 기술을 이용한 지하광산 내 실시간 환경 모니터링 시스템 현장 적용 연구)

  • Park, Yo Han;Lee, Hak Kyung;Seo, Man Keun;Kim, Jin
    • Tunnel and Underground Space
    • /
    • v.29 no.2
    • /
    • pp.108-123
    • /
    • 2019
  • In recent years, as safety management in underground mines has become more important in the worldwide, mine safety management technologies combining information communication technology such as real-time worker position tracking, monitoring system and equipment remote control have been developed. Wireless communication system is mainly applied to these technologies for the flexibility of network configuration. There are some cases the monitoring system was installed in domestic underground mines, but, it is necessary to develop the technology more suitable for domestic mining standard. In this study, we developed the real-time environmental monitoring system using ZigBee technology and examined the result of application to domestic limestone mine. Furthermore, applicability of the developed environment monitoring system to $VentSim^{TM}$ LiveView was checked. This study is expected to contribute to the related studies like the optimization of the ventilation system in underground mines.

Development of a displacement measurement system for architectural structures using artificial intelligence techniques (인공지능 기법을 활용한 건축 구조물 변위측정시스템 개발)

  • Kang, Ye-Jin;Kim, Dae-Geon;Woo, Jong-Yeol;Lee, Dong-Oun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.135-136
    • /
    • 2022
  • As a recent technology, it is possible to partially grasp the occurrence of displacement of the entire building through artificial intelligence technology for big data through scanning. However, scanning and data processing take a lot of time, so there is a limit to constant monitoring, so constant monitoring technology of building behavior that combines wireless remote sensors and 3D shape scanning is required. Therefore, in this study, artificial intelligence program coding technology is linked. In addition, a technology capable of real-time wireless remote measurement of structure displacement will be developed through technology development in response to safety management that combines existing building technologies such as sensors. Through this, it is possible to establish an integrated management system for safety inspection and diagnosis.

  • PDF

Investigation for Applicability of Bluetooth Mesh Networking in Underground Space (BMN(Bluetooth Mesh Networking)의 지하공간 적용성에 대한 사례 조사)

  • Lee, Chulho;Choi, Soon-Wook;Kang, Tae-Ho;Jeon, Jinoh;Ahn, Cheongjin;Song, Tae-Geon
    • Tunnel and Underground Space
    • /
    • v.29 no.6
    • /
    • pp.367-378
    • /
    • 2019
  • As the development of IT technology, the way to manage the underground construction site in real time using wireless network communication is being considered. Underground space is limited area compared to the ground site due to the enclosed communication environment and spatial characteristics. BMN (Bluetooth Mesh Networking) technology is a recently introduced wireless communication technology that bluetooth device acts as a repeater to form a networking mesh and monitor individual devices. This article examines the areas to be considered for analyzing the applicability of BMN technology to underground spaces, and the cases studies of wireless communication monitoring systems currently being developed. And the BMN technology which is being developed for the underground application is also introduced.

Health Monitoring System of Large Civil Structural System Based on Local Wireless Communication System (근거리 무선통신을 이용한 대형토목구조물의 모니터링시스템)

  • Heo, Gwanghee;Choi, Man-Yong;Kim, Chi-Yup
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.4
    • /
    • pp.199-204
    • /
    • 1999
  • The continuing development of the sensors for the measurement of the safety of structures has been making a turning point in measuring and evaluating the larger civil structural system as well. However, there are still remaining problems to be solved for the extremely large structure because the natural damages of those structures are not so simple to be monitored for the reason of their locational and structural conditions. One of the most significant problems is that a number of cables which connect the measuring system to the analyzer are liable to distort actual data. This paper presents a new monitoring system for large structures by means of a local wireless communication technique which would eliminate the possibility of the distortion of data by noise in cables. This new monitoring system employs the wireless system and the software for data communication, along with the strain sensor and accelerometers which have been already used in the past. It makes it possible for the data, which have been chosen by the central controling system from the various sensors placed in the large civil structures, to be wirelessly delivered and then analyzed and evaluated by decision making system of the structures.

  • PDF