• Title/Summary/Keyword: wireless resonant frequency

Search Result 123, Processing Time 0.033 seconds

A Feedback Circuit of Effective Wireless Power Transfer for Low Power System

  • Lho, Young Hwan
    • Journal of IKEEE
    • /
    • v.22 no.2
    • /
    • pp.480-483
    • /
    • 2018
  • Wireless power transfer (WPT) is the technology that forces the power to transmit electromagnetic field to an electrical load through an air gap without interconnecting wires. This technology is widely used for the applications from low power smartphone to high power electric railroad. In this paper, the model of wireless power transfer circuit for the low power system is designed for a resonant frequency of 13.45 MHz. Also, a feedback WPT circuit to improve the power transfer efficiency is proposed and shown better performance than the original open WPT circuit, and the methodology for power efficiency improvement is studied as the coupling coefficient increases above 0.01, at which the split frequency is made.

Parameter Tuning of Wireless Charging Circuit using Switched-Capacitor (스위치드-커패시터를 이용한 무선충전회로의 파라미터 튜닝)

  • Kim, Myoung-Su;Kang, Byeong-Geuk;Chung, Se-Kyo
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.315-316
    • /
    • 2013
  • This paper presents a parameter tuning method of a LLC resonant converter for a wireless charging circuit. A switched-capacitor is used to change the resonant frequency of the resonant circuit. The simulation results verify that the efficiency of the power transfer can be improved by a duty control of the switched-capacitor for various values of the coupling coefficient.

  • PDF

Operating Frequency Design for Stable Initial Operation of Loosely Coupled Resonant DAB Converter (Loosely Coupled Resonant DAB 컨버터의 안정적인 초기 구동을 위한 동작 주파수 설계)

  • Baek, Seung-Hyuk;Kim, Sungmin;Lee, Jaehong;Lee, Seung-Hwan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.6
    • /
    • pp.437-445
    • /
    • 2021
  • This paper proposes an operating frequency design method that limits the voltage applied to aload-side converter during the initial operation of a loosely coupled resonant dual-active bridge (LCR-DAB) converter and an initial operating strategy that applies it. The LCR-DAB converter uses two wireless power transfer coils instead of the high-frequency transformer of the general DAB converter. The wireless power coil has a physical distance of several tens of millimeter or more between the two coils; thus, the LCR-DAB converter is a bidirectional isolated power conversion system that can easily achieve high insulation performance. However, for the initial operation of the LCR-DAB, if the power-side converter is operated at the resonance frequency while the load-side converter is not operating, then a very high voltage due to resonance is applied to the load-side converter, thereby causing damage to the converter. Therefore, a method that can stably charge the DC link voltage of the secondary-side converter during the initial operation is needed. This paper proposes a method to initially charge the secondary-side DC link by operating the primary-side converter at a frequency with limited voltage gain rather than at a steady-state operating frequency. The validity of the proposed frequency design method and initial operating sequence is verified through simulation and experimentation of the 1 KW LCR-DAB converter.

5.2 GHz Band 2nd-order Bandpass Filter Using LTCC Multi-layer Technology (LTCC공정을 이용한 5GHz 대역 무선 LAN용 2단 적층 대역통과 여파기)

  • Song, Hee-Seok;Lee, Jae-Young;Lee, Kyu-Bok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.273-276
    • /
    • 2003
  • 본 논문에서는 한쪽이 단락된 스트립선로(Stripline)와 Loading 캐패시턴스(Capacitance)로 구성된 새로운 형태의 1/4파장 스트립선로 공진기를 제안하였으며, 이 공진기를 이용해서 5.2 GHz 대역 무선 LAN용 적층 대역통과 여파기를 설계, 제작 하였다. 제안한 공진기의 전파지연효과(Slow-wave Effect) 때문에, 기존의 공진기에 비해서 길이가 축소되며, 기준 공진주파수(Fundamental Resonant Frequency)에 대한, 첫 번째 기생공진주파수(First Spurious Resonant Frequency) 값이 커지기 때문에, 넓은 상향저지대역(Wide Upper Stopband)을 갖는 초소형의 대역통과 여파기의 설계가 가능하다. 설계한 여파기를 LTCC 적층 공정 기술을 이용하여 제작하였으며 그 크기는 $3.2mm{\times}1.6mm{\times}0.8mm$ 이다.

  • PDF

Magnetic Resonant Coupling Based Wireless Power Transfer System with In-Band Communication

  • Kim, Sun-Hee;Lim, Yong-Seok;Lee, Seung-Jun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.6
    • /
    • pp.562-568
    • /
    • 2013
  • This paper presents a design of a wireless power transfer system based on magnetic resonant coupling technology with in-band wireless communication. To increase the transmission distance and compensate for the change in the effective capacitance due to the varying distance, the proposed system used a loop antenna with a selectable capacitor array. Because the increased transmission distance enables multiple charging, we added a communication protocol operated at the same frequency band to manage a network and control power circuits. In order to achieve the efficient bandwidth in both power transfer mode and communication mode, the S-parameters of the loop antennas are adjusted by switching a series resistor. Our test results showed that the loop antenna achieved a high Q factor in power transfer mode and enough passband in communication mode.

Real-time Blood Pressure Monitoring in Porcine Tibial Artery Using LC Resonant Pressure Sensor (LC 공진형 압력 센서를 이용한 돼지 경골 동맥의 실시간 혈압 측정)

  • Choi, Won-Seok;Kim, Jin-Tae;Joung, Yeun-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.6
    • /
    • pp.445-450
    • /
    • 2012
  • We have developed an implantable wireless sensor for real time pressure monitoring of blood circulation system. MEMS (micro-electro-mechanical system) technology was adopted as a sensor development method. The sensor is composed of photolithographically patterned inductors and a distributed capacitor in gap between the inductors. A resulting LC resonant system produces its resonant frequency in range of 269 to 284 MHz at 740 mmHg. To read the resonant frequency changed by blood pressure variation, we developed a custom readout system based on a network analyzer functionality. The bench-top testing of the pressure sensors showed good mechanical and electrical functionality. A sensor was implanted into tibial artery of farm pig, and interrogated wirelessly with accurate readings of blood pressure. After 45 days, the sensor's electrical response and histopathology were studied with good frequency reading and biocompatibility.

Implementation of Inductive Wireless Power Transfer System based on LLC Converter without Wireless Communication between Tx and Rx (Tx-Rx간 무선통신이 필요 없는 LLC 컨버터 기반 유도형 무선전력전송 시스템 구현)

  • Kim, Moon-Young;Choi, Shin-Wook;Kang, Jeong-il;Han, Jonghee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.5
    • /
    • pp.311-318
    • /
    • 2019
  • In general wireless power transfer systems (WPTSs), power transfer is controlled by the wireless communication between a transmitter (Tx) and a receiver (Rx). However, WPTS is difficult to apply in electronic products that do not have batteries, such as TVs. A WPTS with resonators based on a transformer of LLC series resonant converter is proposed in this study to eliminate wireless communication units between a Tx and an Rx. The proposed system operates at the boundary of the resonance frequency, and the required power can be stably supplied to authorized devices even though some misalignment occurs. Moreover, standby power standards for the electronic product can be satisfied.

Single Feed Compact Wideband Antenna for Wireless Communication Applications

  • Park, Noh-Joon;Kang, Young-Jin
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.2
    • /
    • pp.164-168
    • /
    • 2008
  • Wideband terminal and base station is required to serve not only existing 1st and 2nd generation mobile communication systems but also 3rd generation systems. In this paper, we presents a feasibility study on single feed compact wideband antenna for wireless communication applications including GSM (890-960 MHz), GPS (1575 MHz), DCS (1710-1880 MHz), PCS (1880-1990 MHz), UMTS (1900-2200 MHz), ISM (2400-2480 MHz), IMT2000 and satellite DMB bands. The original antenna was designed for partial discharge detection sensor in high voltage diagnostic system. However, we modified the original prototype to achieve shifted down resonant frequency for wideband wireless communication applications. The experimental result shows good return loss characteristics and radiation patterns except for the total gain at each resonant frequency. The maximum measured gain was 2.45 dBi${\sim}$3.18 dBi at 1710 MHz${\sim}$1880 MHz.

Wireless Power Transmission using Electromagnetic Inductive Coupling and LC Resonant (자기유도방식과 LC공진을 이용한 무선전력전송기기)

  • Lee, Seung-Hwan;Kimm, Hyoen-Min;Kim, Hee-Je;Kim, Su-Weon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.3
    • /
    • pp.349-354
    • /
    • 2013
  • Wireless power transmission introduced by Tesla has instrumented by many scientists of the world. This technique first was utilized as wireless communications such as radio in long range transmission. And contactless transmission using inductive property was used on white goods. In 2007, MIT' lab introduced that new wireless power transmission by magnetic resonance which has about 50% efficiency and 2M transmission distances, it was a chance to refocus a new possibility of wireless power transmission. In this paper, using LC coupling compensate the short distances of contactless transmission, this simple method could transmit about 30cm distances. Using this approach, it can be solved the short transmission distances, a drawback of Electromagnetic inductive coupling method.

Graphical Design Plane Analysis for Series-Compensated Resonant Energy Links of Inductive Wireless Power Transfer Systems

  • Jeong, Chae-Ho;Choi, Sung-Jin
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1440-1448
    • /
    • 2019
  • In wireless power transfer systems, it is important to design resonant energy links in order to increase the power transfer efficiency and to obtain desired system performances. This paper proposes a method for designing and analyzing the resonant energy links in a series-series configured IPT (inductive power transfer) system using the FOM-rd plane. The proposed FOM-rd graphical design plane can analyze and design the voltage gain and the power efficiency of the energy links while considering changes in the misalignment between the coils and the termination load condition. In addition, the region of the bifurcation phenomena, where voltage gain peaks are split over the frequency, can also be distinctly identified on the graphical plane. An example of the design and analysis of a 100 W inductive power transfer system with the proposed method is illustrated. The proposed method is verified by measuring the voltage gain and power efficiency of implemented hardware.