• 제목/요약/키워드: wireless relay networks

검색결과 228건 처리시간 0.021초

A Bandwidth Adaptive Path Selection Scheme in IEEE 802.16 Relay Networks

  • Lee, Sung-Hee;Ko, Young-Bae
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제5권3호
    • /
    • pp.477-493
    • /
    • 2011
  • The IEEE 802.16 mobile multi-hop relay (MMR) task group 'j' (TGj) has introduced the multi-hop relaying concept in the IEEE 802.16 Wireless MAN, wherein a relay station (RS) is employed to improve network coverage and capacity. Several RSs can be deployed between a base station and mobile stations, and configured to form a tree-like multi-hop topology. In such architecture, we consider the problem of a path selection through which the mobile station in and outside the coverage can communicate with the base station. In this paper, we propose a new path selection algorithm that ensures more efficient distribution of resources such as bandwidth among the relaying nodes for improving the overall performance of the network. Performance of our proposed scheme is compared with the path selection algorithms based on loss rate and the shortest path algorithm. Based on the simulation results using ns-2, we show our proposal significantly improves the performance on throughput, latency and bandwidth consumption.

A Reporting Interval Adaptive, Sensor Control Platform for Energy-saving Data Gathering in Wireless Sensor Networks

  • Choi, Wook;Lee, Yong;Kim, Sang-Chul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제5권2호
    • /
    • pp.247-268
    • /
    • 2011
  • Due to the application-specific nature of wireless sensor networks, the sensitivity to such a requirement as data reporting interval varies according to the type of application. Such considerations require an application-specific, parameter tuning paradigm allowing us to maximize energy conservation prolonging the operational network lifetime. In this paper, we propose a reporting interval adaptive, sensor control platform for energy-saving data gathering in wireless sensor networks. The ultimate goal is to extend the network lifetime by providing sensors with high adaptability to application-dependent or time-varying, reporting interval requirements. The proposed sensor control platform is based upon a two phase clustering (TPC) scheme which constructs two types of links within each cluster - namely, direct link and relay link. The direct links are used for control and time-critical, sensed data forwarding while the relay links are used only for multi-hop data reporting. Sensors opportunistically use the energy-saving relay link depending on the user reporting, interval constraint. We present factors that should be considered in deciding the total number of relay links and how sensors are scheduled for sensed data forwarding within a cluster for a given reporting interval and link quality. Simulation and implementation studies demonstrate that the proposed sensor control platform can help individual sensors save a significant amount of energy in reporting data, particularly in dense sensor networks. Such saving can be realized by the adaptability of the sensor to the reporting interval requirements.

A Simple $N^{th}$ Best-Relay Selection Criterion for Opportunistic Two-Way Relay Networks under Outdated Channel State Information

  • Ou, Jinglan;Wu, Haowei;Wang, Qi;Zou, Yutao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권10호
    • /
    • pp.3409-3422
    • /
    • 2014
  • The frequency spectrum available for the wireless communication is extremely crowded. In order to improve the spectral efficiency, the two-way relay networks have aroused great attention. A simple $N^{th}$ best-relay selection criterion for the opportunistic two-way relay networks is proposed, which can be implemented easily by extending the distributed timer technique in practice, since the proposed criterion is mainly based on the channel gains. The outage performance of the proposed relay selection scheme is analyzed under the outdated channel state information (CSI), and a tight closed-form lower bound and asymptotic value of the outage probability over Rayleigh fading channels are obtained. Simulation results demonstrate that the tight closed-form lower bound of the outage probability very closely matches with simulated ones in the whole SNR region, and the asymptotic results provide good tight approximations to the simulation ones, especially in the high SNR region.

Optimal sensing period in cooperative relay cognitive radio networks

  • Zhang, Shibing;Guo, Xin;Zhang, Xiaoge;Qiu, Gongan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권12호
    • /
    • pp.5249-5267
    • /
    • 2016
  • Cognitive radio is an efficient technique to improve spectrum efficiency and relieve the pressure of spectrum resources. In this paper, we investigate the spectrum sensing period in cooperative relay cognitive radio networks; analyze the relationship between the available capacity and the signal-to-noise ratio of the received signal of second users, the target probability of detection and the active probability of primary users. Finally, we derive the closed form expression of the optimal spectrum sensing period in terms of maximum throughput. We simulate the probability of false alarm and available capacity of cognitive radio networks and compare optimal spectrum sensing period scheme with fixed sensing period one in these performance. Simulation results show that the optimal sensing period makes the cognitive networks achieve the higher throughput and better spectrum sensing performance than the fixed sensing period does. Cooperative relay cognitive radio networks with optimal spectrum sensing period can achieve the high capacity and steady probability of false alarm in different target probability of detection. It provides a valuable reference for choosing the optimal spectrum sensing period in cooperative relay cognitive radio networks.

무선 센서 네트워크에서 자기 전달 신호를 활용한 전송 제어 방법 (A link control method using self relay signal in wireless sensor networks)

  • 김승천
    • 한국인터넷방송통신학회논문지
    • /
    • 제9권2호
    • /
    • pp.37-43
    • /
    • 2009
  • 안정적인 유비쿼터스 센서 네트워크 서비스가 운용되기 위해서는 센서 네트워크 내에서 신뢰성이 확보되어야 하며, 이중에서도 전송 신뢰성의 확보는 다른 어떤 것보다 시급하다. 특히 무선 센서 네트워크의 활용이라는 측면을 보았을 때 전송 신뢰성은 단순히 안정적인 전송만을 생각하기 보다는 성능 향상이라는 부분도 생각해야 한다. 이를 위해서 본 논문에서는 전송 신뢰성 확보와 성능 개선이라는 두가지 모두를 확보 할 수 있는 방법을 제안한다. 제안하는 방법은 무선 환경 내에서의 자기 전달 신호를 활용하여 ACK를 대신하고 이를 바탕으로 다음 데이터의 전송을 시작하도록 한다. 성능 개선을 확인하기 위해서 제안 방법의 수학적 분석과 시뮬레이션을 통한 검증을 실시한다.

  • PDF

BLUE-Based Channel Estimation Technique for Amplify and Forward Wireless Relay Networks

  • PremKumar, M.;SenthilKumaran, V.N.;Thiruvengadam, S.J.
    • ETRI Journal
    • /
    • 제34권4호
    • /
    • pp.511-517
    • /
    • 2012
  • The best linear unbiased estimator (BLUE) is most suitable for practical application and can be determined with knowledge of only the first and second moments of the probability density function. Although the BLUE is an existing algorithm, it is still largely unexplored and has not yet been applied to channel estimation in amplify and forward (AF)-based wireless relay networks (WRNs). In this paper, a BLUE-based algorithm is proposed to estimate the overall channel impulse response between the source and destination of AF strategy-based WRNs. Theoretical mean square error (MSE) performance for the BLUE is derived to show the accuracy of the proposed channel estimation algorithm. In addition, the Cram$\acute{e}$r-Rao lower bound (CRLB) is derived to validate the MSE performance. The proposed BLUE channel estimation algorithm approaches the CRLB as the length of the training sequence and number of relays increases. Further, the BLUE performs better than the linear minimum MSE estimator due to the minimum variance characteristic exhibited by the BLUE, which happens to be a function of signal-to-noise ratio.

Physical Layer Security for Two-Way Relay NOMA Systems with Energy Harvesting

  • Li, Hui;Chen, Yaping;Zou, Borong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권6호
    • /
    • pp.2094-2114
    • /
    • 2022
  • Due to the wide application of fifth generation communication, wireless sensor networks have become an indispensable part in our daily life. In this paper, we analyze physical layer security for two-way relay with energy harvesting (EH), where power splitter is considered at relay. And two kinds of combined methods, i.e., selection combining (SC) and maximum ratio combining (MRC) schemes, are employed at eavesdropper. What's more, the closed-form expressions for security performance are derived. For comparison purposes, this security behaviors for orthogonal multiple access (OMA) networks are also investigated. To gain deeper insights, the end-to-end throughput and approximate derivations of secrecy outage probability (SOP) under the high signal-to-noise ratio (SNR) regime are studied. Practical Monte-Carlo simulative results verify the numerical analysis and indicate that: i) The secure performance of SC scheme is superior to MRC scheme because of being applied on eavesdropper; ii) The secure behaviors can be affected by various parameters like power allocation coefficients, transmission rate, etc; iii) In the low and medium SNR region, the security and channel capacity are higher for cooperative non-orthogonal multiple access (NOMA) systems in contrast with OMA systems; iv) The systematic throughput can be improved by changing the energy conversion efficiency and power splitting factor. The purpose of this study is to provide theoretical direction and design of secure communication.

Swarm Intelligence-based Power Allocation and Relay Selection Algorithm for wireless cooperative network

  • Xing, Yaxin;Chen, Yueyun;Lv, Chen;Gong, Zheng;Xu, Ling
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권3호
    • /
    • pp.1111-1130
    • /
    • 2016
  • Cooperative communications can significantly improve the wireless transmission performance with the help of relay nodes. In cooperative communication networks, relay selection and power allocation are two key issues. In this paper, we propose a relay selection and power allocation scheme RS-PA-PSACO (Relay Selection-Power Allocation-Particle Swarm Ant Colony Optimization) based on PSACO (Particle Swarm Ant Colony Optimization) algorithm. This scheme can effectively reduce the computational complexity and select the optimal relay nodes. As one of the swarm intelligence algorithms, PSACO which combined both PSO (Particle Swarm Optimization) and ACO (Ant Colony Optimization) algorithms is effective to solve non-linear optimization problems through a fast global search at a low cost. The proposed RS-PA-PSACO algorithm can simultaneously obtain the optimal solutions of relay selection and power allocation to minimize the SER (Symbol Error Rate) with a fixed total power constraint both in AF (Amplify and Forward) and DF (Decode and Forward) modes. Simulation results show that the proposed scheme improves the system performance significantly both in reliability and power efficiency at a low complexity.

UWB 기반 Distributed MAC 시스템을 위한 협력 통신 프로토콜 설계 (Design of Cooperative Communication Protocol for UWB-based Distributed MAC Systems)

  • 허경
    • 한국정보통신학회논문지
    • /
    • 제16권3호
    • /
    • pp.460-469
    • /
    • 2012
  • 본 논문에서는 UWB 기술 기반 WiMedia Distributed Medium Access Control (D-MAC) 표준 프로토콜에 적용할 수 있는 협력 통신 프로토콜을 제안한다. 이를 위해 무선 채널 상태에 따라 변화하는 UWB 링크 전송 속도에 적응적인 릴레이 노드 선정 알고리즘을 제안한다. 본 논문에서 제안하는 UWB 링크에 적응적인 릴레이 통신 프로토콜은 분산적인 D-MAC 표준 기술 및 무선 USB 기술과 호환성을 갖고, 각 디바이스에서 독립적으로 실행되는 Relay Node Selection (RNS) 기준에 따라 실행된다.

무선 센서네트워크에서 협업전송을 위한 노드선택 알고리즘 (Node Selection Algorithm for Cooperative Transmission in the Wireless Sensor Networks)

  • 고상;박형근
    • 전기학회논문지
    • /
    • 제58권6호
    • /
    • pp.1238-1240
    • /
    • 2009
  • In the wireless sensor network, cooperative transmission is an effective technique to combat multi-path fading and reduce transmitted power. Relay selection and power allocation are important technical issues to determine the performance of cooperative transmission. In this paper, we proposed a new multi-relay selection and power allocation algorithm to increase network lifetime. The proposed relay selection scheme minimizes the transmitted power and increase the network lifetime by considering residual power as well as channel conditions. Simulation results show that proposed algorithm obtains much longer network lifetime than the conventional algorithm.