• Title/Summary/Keyword: wireless power transfer

Search Result 512, Processing Time 0.029 seconds

The Resonant class Φ2 Inverter for short range magnetic resonant wireless power transfer system (근거리 무선전력 전송용 2MHz 공진형 class Φ2 인버터)

  • YANG, Haeyoul;KIM, Changsun
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.447-448
    • /
    • 2012
  • With wireless power transfer the of ECR device the designed with a high-frequency and high frequency AC power to the device that may enter the high-frequency switching inverter to be possible. In this paper, is designed to 2MHz switching frequency by using ECR device capable of 2MHz Class ${\Phi}_2$ inverter was designed as a wireless power transmission.

  • PDF

Study on a Laser Wireless Power Charge Technology (레이저 무선충전 기술 연구)

  • Rhee, Dong-Hun;Kim, Sung-Man
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.12
    • /
    • pp.1219-1224
    • /
    • 2016
  • The current wireless power charge technologies are based on induction coupling, magnetic resonant coupling, electromagnetic wave, etc. However, the current wireless power charge technologies has several disadvantages including short transfer range, electromagnetic interference, etc. In this paper, we investigate and demonstrate a laser wireless power charge technology. A laser source is used in the transmitter to convert from electric power to optical power and a solar cell or a photodiode is used in the receiver to convert from optical power to electric power. The laser wireless power charge technology may be the most efficient wireless power charge technology in the long distance over than 10 meters. Our experimental results show a transfer efficiency of 2.15% at the 70-m long distance with a 100 mW laser transmitter and a photodiode receiver.

Some Basic Investigation on Wireless Power Transfer (무선 전력 전송에 관한 기본적인 고찰)

  • Park, Jongmin;Nam, Sangwook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.10
    • /
    • pp.959-965
    • /
    • 2014
  • This paper summarizes the previous research results of fundamental investigation done in SNU on the wireless power transfer. Firstly, the physical limitation of a wireless power transfer using the spherical modes is reviewed. It is found that wireless power transfer depends only on the radiation efficiency of the antennas and the distance between two antennas involved. Secondly, we review the characteristics of WPTS with different sources and compare the performance differences of WPTS according to the source type. In addition, the method for efficient WPTS is suggested when the distance between antennas is varied. Finally, by using the time domain solution of the coupled mode equation, we present an analytic formula which can be used to differentiate Inductive Coupling(IC) and Magnetic Resonance Coupling(MAC) which are often used ambiguously in wireless power transfer system.

Miniaturization of Inductive Resonator for Implementation of Wireless Power Transfer Technology Using Resonant Inductive Coupling (자기 공진 결합 방식을 이용한 무선 전력 전송기술 구현을 위한 자기 공진기 소형화 설계)

  • Cho, Young Seek;Park, Ji Hye;Nam, Yun Seo;Choi, Seyeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.8
    • /
    • pp.1798-1804
    • /
    • 2014
  • A novel inductive resonator for the implementation of wireless power transfer using resonant inductive coupling is presented. The proposed inductive resonator is much smaller than the helix shape resonator suggested by MIT research team but operates the same resonant frequency with comparable wireless power transfer efficiency. The proposed inductive resonator is a spiral shape ($1,696cm^3$), which is 97 % smaller than the helix shape ($59,376cm^3$). The wireless power transfer efficiency is less than 9 % when compared to the helix shape resonator. With the reduce size and comparable efficiency, this novel inductive resonator can be used in practical application of wireless power transfer.

Feasibility Analysis on Ground-level Stations and Wireless Power Transfer Technology Applications for Monorail System

  • Hwang, Karam;Chung, Jong-Duk;Lee, Kibeom;Tak, Junyoung;Suh, In-Soo
    • International Journal of Railway
    • /
    • v.7 no.3
    • /
    • pp.71-79
    • /
    • 2014
  • Subway systems have been a proved method of public transport and are widely used in major cities around the world. However, the time and cost it takes to construct such systems are very high, as it requires underground tunnels. Cities in various countries have implemented monorail systems as public railway transport as it can be more economical and quicker compared to subway systems in terms of construction. In addition, it provides more convenience towards the public as it is not affected to traffic, and also provides an aerial view of the city. However, the overall construction cost for monorail systems is still significantly high, and as a possible solution to further reduce the overall cost, implementation of ground-level stations and wireless power transfer technology has been proposed in this paper. A concept application layout of ground-level stations and wireless power transfer systems has been discussed, using the Daegu monorail Line 3 system as a simulation base. The expected cost for monorail systems implementing ground-level stations and/or wireless power transfer technology has been estimated based on literature survey, and was compared with the current construction cost of Daegu monorail system. Based on comparison, it has shown that implementation of ground-level stations are the most economical, and can be easily implemented for either starting or expanding the monorail line. Implementation of wireless power transfer technology is also economical, but is more feasible when starting a new monorail line as it requires components which will alter the configuration of the train and infrastructure.

Omnidirectional Resonator in X-Y Plane Using a Crisscross Structure for Wireless Power Transfer

  • Kim, Donggeon;Seo, Chulhun
    • Journal of electromagnetic engineering and science
    • /
    • v.15 no.3
    • /
    • pp.194-198
    • /
    • 2015
  • Magnetic resonant coupling is more efficient than inductive coupling for transferring power wirelessly over a distance. However, a conventional resonant wireless power transfer (WPT) system requires a transmitter and receiver pair in exactly coaxial positions. We propose a resonator that can serve as an omnidirectional WPT system. A magnetic field will be generated by the current flowed through the transmitter. This magnetic field radiates omnidirectionally in the x-y plane because of the crisscross structure characteristic of the transmitter. The proposed resonator is demonstrated by using a single port. To check the received S21 and transfer efficiency, we moved the receiver around the transmitter at different distances (50-350 mm). As a result, the transmission efficiency is found to be 48%-54% at 200 mm.

Development of Transmitter/Receiver Front-End Module with Automatic Tx/Rx Switching Scheme for Retro-Reflective Beamforming

  • Cho, Young Seek
    • Journal of information and communication convergence engineering
    • /
    • v.17 no.3
    • /
    • pp.221-226
    • /
    • 2019
  • In this work, a transmitter/receiver front-end module (T/R FEM) with an automatic Tx/Rx switching scheme for a 2.4 GHz microwave power transfer is developed for a retro-reflective beamforming scheme. Recently, research on wireless power transfer techniques has moved to wireless charging systems for mobile devices. Retro-reflective beamforming is a good candidate for tracking the spatial position of a mobile device to be charged. In Tx mode, the T/R FEM generates a minimum of 1 W. It also comprises an amplitude and phase monitoring port for transmitting RF power. In Rx mode, it passes an Rx pilot signal from a mobile device to a digital baseband subsystem to recognize the position of the mobile device. The insertion loss of the Rx signal path is 4.5 dB. The Tx and Rx modes are automatically switched by detecting the Tx input power. This T/R FEM is a design example of T/R FEMs for wireless charging systems based on a retro-reflective beamforming scheme.

An Efficient Cluster Management Scheme Using Wireless Power Transfer for Mobile Sink Based Solar-Powered Wireless Sensor Networks

  • Son, Youngjae;Kang, Minjae;Noh, Dong Kun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.2
    • /
    • pp.105-111
    • /
    • 2020
  • In this paper, we propose a scheme that minimizes the energy imbalance problem of solar-powered wireless sensor network (SP-WSN) using both a mobile sink capable of wireless power transfer and an efficient clustering scheme (including cluster head election). The proposed scheme charges the cluster head using wireless power transfer from a mobile sink and mitigates the energy hotspot of the nodes nearby the head. SP-WSNs can continuously harvest energy, alleviating the energy constraints of battery-based WSN. However, if a fixed sink is used, the energy imbalance problem, which is energy consumption rate of nodes located near the sink is relatively increased, cannot be solved. Thus, recent research approaches the energy imbalance problem by using a mobile sink in SP-WSN. Meanwhile, with the development of wireless power transmission technology, a mobile sink may play a role of energy charging through wireless power transmission as well as data gathering in a WSN. Simulation results demonstrate that increase the amount of collected data by the sink using the proposed scheme.

Magnetic Resonant Wireless Power Transfer with Rearranged Configurations

  • Kang, Seok Hyon;Jung, Chang Won
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.2
    • /
    • pp.76-85
    • /
    • 2017
  • We investigate the indirect-fed magnetic resonant wireless power transfer (MR-WPT) system for wireless charging for mobile devices by rearranging the loops and coils. Conventional MR-WPT is difficult to apply to consumer electronic products because of the arrangement of the resonators. In addition, there are restrictions for charging using a wireless technology, which depend on the circumstances of the usage scenarios. For practical applications, we analyzed the transfer efficiency of the MR-WPT system with various combinations and positions of resonators. Three rearranged configurations (Out-Out, Out-In, In-In) have been considered and experimentally investigated using hollow pipe loops and wire copper coils. There were four types of loops and two types of coils; each one had a different diameter and thickness. The results of the measurements show that the trends of the transfer efficiencies for the three configurations were similar. A transfer efficiency of 82.5% was achieved at a 35-cm distance between the 60-cm diameter transmitter (Tx) and receiver (Rx) coils.

Improvement of Electromagnetic Shielding Structure for Reduction of the Leakage Magnetic Field in WPT System (WPT 시스템의 누설자계 감소를 위한 전자파 차폐구조 개선)

  • Kim, Jongchan;Lee, Seungwoo;Kang, Byeong-Nam;Hong, Ic-Pyo;Cho, In-Kui;Kim, Nam
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.1
    • /
    • pp.61-68
    • /
    • 2017
  • In this paper, we propose an improved magnetic field shielding structure to reducing the magnetic field generated in the wireless power transfer system operating at a low frequency band. The proposed structure consists of the magnetic material and the conductive material, magnetic field cancelling effect for power transfer is minimized while improving the leakage magnetic field cancelling effect by optimizing the various design parameters in the proposed structure. We analyzed and verified the efficiency of the wireless power transfer system and the reduction effect of the leakage magnetic field through computer simulation and measurement. Analysis results show that power transfer efficiency of the wireless power transfer system utilizing the proposed structure is 77 %, which is maintained at the conventional power transfer efficiency. In addition, compared with the structure maintaining high power transfer efficiency, leakage magnetic field strength is reduced to 29~37 % at the nearest point.