• 제목/요약/키워드: wireless environmental monitoring

검색결과 222건 처리시간 0.023초

선박 및 해양구조물의 안전 모니터링 정보 획득을 위한 ZigBee Sensor node 적용에 관한 연구 (Implementation of a Vessel USN for Safety Monitoring System Based on ZigBee)

  • 김대석;이경호;이정민
    • 한국CDE학회논문집
    • /
    • 제19권2호
    • /
    • pp.169-181
    • /
    • 2014
  • Recently ships and ocean platforms are becoming increasingly technological, unmanned, and huge. Maintenance and safety monitoring of these products is very important for safety reasons. Therefore, real-time monitoring of safety regions, such as the engine room, and hull structure, and environmental states, like fire and pressure of LNG tanks, is required for the sustainable ships. In this paper, a ZigBee-based wireless sensor network is suggested to monitor ships and ocean platforms effectively. However, this causes some telecommunication problems because these products are made of steel. To resolve this problem, we use the mesh networking of Zig-Bee that can monitor the regions and environmental states consistently. The telecommunication of such a monitoring system is tested on a real container ship and its performance is verified. The real-time monitoring results are displayed on the users' smart devices.

A wireless guided wave excitation technique based on laser and optoelectronics

  • Park, Hyun-Jun;Sohn, Hoon;Yun, Chung-Bang;Chung, Joseph;Kwon, Il-Bum
    • Smart Structures and Systems
    • /
    • 제6권5_6호
    • /
    • pp.749-765
    • /
    • 2010
  • There are on-going efforts to utilize guided waves for structural damage detection. Active sensing devices such as lead zirconate titanate (PZT) have been widely used for guided wave generation and sensing. In addition, there has been increasing interest in adopting wireless sensing to structural health monitoring (SHM) applications. One of major challenges in wireless SHM is to secure power necessary to operate the wireless sensors. However, because active sensing devices demand relatively high electric power compared to conventional passive sensors such as accelerometers and strain gauges, existing battery technologies may not be suitable for long-term operation of the active sensing devices. To tackle this problem, a new wireless power transmission paradigm has been developed in this study. The proposed technique wirelessly transmits power necessary for PZT-based guided wave generation using laser and optoelectronic devices. First, a desired waveform is generated and the intensity of the laser source is modulated accordingly using an electro-optic modulator (EOM). Next, the modulated laser is wirelessly transmitted to a photodiode connected to a PZT. Then, the photodiode converts the transmitted light into an electric signal and excites the PZT to generate guided waves on the structure where the PZT is attached to. Finally, the corresponding response from the sensing PZT is measured. The feasibility of the proposed method for wireless guided wave generation has been experimentally demonstrated.

지리 센서 네트워크 기반 환경 모니터링 시스템에서의 센서 데이터 추상화 및 활용 (Sensor Data Abstraction and Utilization in Environmental Monitoring System based on Geosensor Network)

  • 정영진
    • 정보처리학회논문지D
    • /
    • 제16D권2호
    • /
    • pp.177-184
    • /
    • 2009
  • 무선 통신 기술과 다양한 감지 기술들의 발달로 실세계의 환경을 분석하고 생태계의 변화를 이해하기 위한 환경 모니터링 시스템들이 널리 개발되고 있다. 이러한 시스템들은 센서 데이터로부터 유용한 정보를 추출하기 위하여, 원시 센서 데이터를 기반으로 질의를 처리하기 때문에, 환경 모니터링 응용에서 전송되는 넓은 지역의 대용량 센서 데이터를 다루기 위해서는 높은 질의 처리 비용을 요구한다. 또한 현재 및 가까운 미래의 상황 체크를 요청하는 사용자 질의에 답하기 어려운 문제점이 있다. 이 논문에서는 환경 모니터링을 위해 사용자 질의를 효과적으로 처리하기 위한 모니터링 시스템 구조를 제시하고, 설계된 센서 데이터 필터링과 추상화 모델의 활용을 기술한다. 제시된 추상화 기법은 GIS의 경사 그리드를 기반으로 설계되어, 빠른 데이터 접근 및 갱신을 지원한다. 상황 분석을 위해 추상화 모델에서 센서 타입별로 추출된 내용은 질의 처리기에서 결합되어 사용자에게 의미있는 정보를 제공하는데 도움을 준다.

에너지 수집형 무선 센서네트워크에서 센싱된 데이터에 기반한 듀티싸이클 스케줄링기법 (Sensed Data based Duty-Cycle Scheduling Scheme for Energy Harvesting Wireless Sensor Networks)

  • 박형근
    • 한국정보통신학회논문지
    • /
    • 제22권4호
    • /
    • pp.670-675
    • /
    • 2018
  • 센서네트워크의 전력문제를 해결할 수 있는 에너지 수집형 무선 센서네트워크 (EH-WSN)에 대한 관심이 증가하고 있다. EH-WSN에서는 에너지 수집과 소비의 균형을 맞추기 위한 on-off 듀티싸이클링에 관한 연구가 많이 진행되고 있다. 그러나 환경감시를 위한 EH-WSN에서 센싱된 데이터의 긴급성과 에너지 수집율은 네트워크의 성능을 결정하는 중요한 요소가 된다. 따라서 단순히 전력의 균형 상태를 유지하는 것 이외에 센싱된 데이터의 중요도 및 에너지 수집율에 따라 듀티싸이클 주기를 조절할 필요성이 대두된다. 본 논문에서는 환경감시를 위한 EH-WSN에서 기존의 전력만을 고려한 on-off 듀티싸이클링의 문제점을 분석하고, 센싱값의 변화율 및 크기값에 의한 센싱 데이터의 우선순위 및 에너지 수집율 등을 고려하여 적응적으로 on-off 주기를 결정하는 듀티싸이클 스케줄링 기법을 제안한다. 시뮬레이션을 통해 제안된 듀티싸이클 스케줄링의 성능을 분석하였다.

Development of a smart wireless sensing unit using off-the-shelf FPGA hardware and programming products

  • Kapoor, Chetan;Graves-Abe, Troy L.;Pei, Jin-Song
    • Smart Structures and Systems
    • /
    • 제3권1호
    • /
    • pp.69-88
    • /
    • 2007
  • In this study, Field-Programmable Gate Arrays (FPGAs) are investigated as a practical solution to the challenge of designing an optimal platform for implementing algorithms in a wireless sensing unit for structuralhealth monitoring. Inherent advantages, such as tremendous processing power, coupled with reconfigurable and flexible architecture render FPGAs a prime candidate for the processing core in an optimal wireless sensor unit, especially when handling Digital Signal Processing (DSP) and system identification algorithms. This paper presents an effort to create a proof-of-concept unit, wherein an off-the-shelf FPGA development board, available at a price comparable to a microprocessor development board, was adopted. Data processing functions, including windowing, Fast Fourier Transform (FFT), and peak detection, were implemented in the FPGA using a Matlab Simulink-based high-level abstraction tool rather than hardware descriptive language. Simulations and laboratory tests were carried out to validate the design.

Development and deployment of large scale wireless sensor network on a long-span bridge

  • Pakzad, Shamim N.
    • Smart Structures and Systems
    • /
    • 제6권5_6호
    • /
    • pp.525-543
    • /
    • 2010
  • Testing and validation processes are critical tasks in developing a new hardware platform based on a new technology. This paper describes a series of experiments to evaluate the performance of a newly developed MEMS-based wireless sensor node as part of a wireless sensor network (WSN). The sensor node consists of a sensor board with four accelerometers, a thermometer and filtering and digitization units, and a MICAz mote for control, local computation and communication. The experiments include calibration and linearity tests for all sensor channels on the sensor boards, dynamic range tests to evaluate their performance when subjected to varying excitation, noise characteristic tests to quantify the noise floor of the sensor board, and temperature tests to study the behavior of the sensors under changing temperature profiles. The paper also describes a large-scale deployment of the WSN on a long-span suspension bridge, which lasted over three months and continuously collected ambient vibration and temperature data on the bridge. Statistical modal properties of a bridge tower are presented and compared with similar estimates from a previous deployment of sensors on the bridge and finite element models.

Urgency-Aware Adaptive Routing Protocol for Energy-Harvesting Wireless Sensor Networks

  • Kang, Min-Seung;Park, Hyung-Kun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제13권3호
    • /
    • pp.25-33
    • /
    • 2021
  • Energy-harvesting wireless sensor networks(EH-WSNs) can collect energy from the environment and overcome the technical limitations of existing power. Since the transmission distance in a wireless sensor network is limited, the data are delivered to the destination node through multi-hop routing. In EH-WSNs, the routing protocol should consider the power situations of nodes, which is determined by the remaining power and energy-harvesting rate. In addition, in applications such as environmental monitoring, when there are urgent data, the routing protocol should be able to transmit it stably and quickly. This paper proposes an adaptive routing protocol that satisfies different requirements of normal and urgent data. To extend network lifetime, the proposed routing protocol reduces power imbalance for normal data and also minimizes transmission latency by controlling the transmission power for urgent data. Simulation results show that the proposed adaptive routing can improve network lifetime by mitigating the power imbalance and greatly reduce the transmission delay of urgent data.

A wireless monitoring system for monocrystalline PV system

  • Kelebekler, Ersoy;Ergun, Riza Emre
    • Advances in Energy Research
    • /
    • 제7권2호
    • /
    • pp.123-134
    • /
    • 2020
  • Photovoltaic systems are progressively attached importance and their installed capacity increases day by day because of their reliability, decremented installation and operating cost and simple construction structure. Generated power obtained from a photovoltaic system changes depending upon regional distinctness, and It can be estimated approximately by taking into consideration mean global radiation amount, temperature and humidity. However, there may be different regional negative or positive factors like dust, air pollution, desert powder which affect generated power. The best reliable data for a region can be obtained from the existing photovoltaic system in the region. For this purpose, a monitoring system for 1000W monocrystalline photovoltaic system constructed at Kocaeli University Uzunciftlik Nuh Cimento Vocational High Scholl is prepared. The installed monitoring system shows and records real values generated from the photovoltaic system and environmental data. In the study, Instantaneous data obtained from the monitoring system for October 2018 and 7th October 2018 is given within figures. Additionally, daily and monthly total energy productions of the photovoltaic system are given for October 2018 and date interval between July 2018 and March 2018, respectively.

Non-invasive acceleration-based methodology for damage detection and assessment of water distribution system

  • Shinozuka, Masanobu;Chou, Pai H.;Kim, Sehwan;Kim, Hong Rok;Karmakar, Debasis;Fei, Lu
    • Smart Structures and Systems
    • /
    • 제6권5_6호
    • /
    • pp.545-559
    • /
    • 2010
  • This paper presents the results of a pilot study and verification of a concept of a novel methodology for damage detection and assessment of water distribution system. The unique feature of the proposed noninvasive methodology is the use of accelerometers installed on the pipe surface, instead of pressure sensors that are traditionally installed invasively. Experimental observations show that a sharp change in pressure is always accompanied by a sharp change of pipe surface acceleration at the corresponding locations along the pipe length. Therefore, water pressure-monitoring can be transformed into acceleration-monitoring of the pipe surface. The latter is a significantly more economical alternative due to the use of less expensive sensors such as MEMS (Micro-Electro-Mechanical Systems) or other acceleration sensors. In this scenario, monitoring is made for Maximum Pipe Acceleration Gradient (MPAG) rather than Maximum Water Head Gradient (MWHG). This paper presents the results of a small-scale laboratory experiment that serves as the proof of concept of the proposed technology. The ultimate goal of this study is to improve upon the existing SCADA (Supervisory Control And Data Acquisition) by integrating the proposed non-invasive monitoring techniques to ultimately develop the next generation SCADA system for water distribution systems.

Design of wireless sensor network and its application for structural health monitoring of cable-stayed bridge

  • Lin, H.R.;Chen, C.S.;Chen, P.Y.;Tsai, F.J.;Huang, J.D.;Li, J.F.;Lin, C.T.;Wu, W.J.
    • Smart Structures and Systems
    • /
    • 제6권8호
    • /
    • pp.939-951
    • /
    • 2010
  • A low-cost wireless sensor network (WSN) solution with highly expandable super and simple nodes was developed. The super node was designed as a sensing unit as well as a receiving terminal with low energy consumption. The simple node was designed to serve as a cheaper alternative for large-scale deployment. A 12-bit ADC inputs and DAC outputs were reserved for sensor boards to ease the sensing integration. Vibration and thermal field tests of the Chi-Lu Bridge were conducted to evaluate the WSN's performance. Integral acceleration, temperature and tilt sensing modules were constructed to simplify the task of long-term environmental monitoring on this bridge, while a star topology was used to avoid collisions and reduce power consumption. We showed that, given sufficient power and additional power amplifier, the WSN can successfully be active for more than 7 days and satisfy the half bridge 120-meter transmission requirement. The time and frequency responses of cables shocked by external force and temperature variations around cables in one day were recorded and analyzed. Finally, guidelines on power characterization of the WSN platform and selection of acceleration sensors for structural health monitoring applications were given.