• Title/Summary/Keyword: wireless environmental monitoring

Search Result 222, Processing Time 0.026 seconds

DNA-functionalized single-walled carbon nanotube-based sensor array for gas monitoring

  • Zhang, Wenjun;Liu, Yu;Wang, Ming. L
    • Smart Structures and Systems
    • /
    • v.12 no.1
    • /
    • pp.73-95
    • /
    • 2013
  • Nine deoxyribonucleic acid (DNA) sequences were used to functionalize single-walled carbon nanotube (SWNT) sensors to detect the trace amount of methanol, acetone, and HCl in vapor. DNA 24 Ma (24 randomly arranged nitrogenous bases with one amine at each end of it) decorated SWNT sensor and DNA 24 A (only adenine (A) base with a length of 24) decorated SWNT sensor have demonstrated the largest sensing responses towards acetone and HCl, respectively. On the other hand, for the DNA GT decorated SWNT sensors with different sequence lengths, the optimum DNA sequence length for acetone and HCl sensing is 32 and 8, separately. The detection of methanol, acetone, and HCl have identified that DNA functionalized SWNT sensors exhibit great selectivity, sensitivity, and repeatability with an accuracy of more than 90%. Further, a sensor array composed of SWNT functionalized with various DNA sequences was utilized to identify acetone and HCl through pattern recognition. The sensor array is a combination of four different DNA functionalized SWNT sensors and two bare SWNT sensors (work as reference). This wireless sensing system has enabled real-time gas monitoring and air quality assurance for safety and security.

Design and Implementation of Data Protocol for Environmental Information Monitoring in Wired and Wireless Networks (유무선 통신망에서 운용 가능한 환경정보 모니터링 데이터 프로토콜 설계 및 구현)

  • Ye, Seoung-Bin;Ceong, Hee-Taek;Han, Soon-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.2
    • /
    • pp.312-320
    • /
    • 2010
  • Most online monitoring systems of running currently based on the wired network and local area wireless network generate an increase of administrative costs such as synchronization of data protocol conversion, flexible operation of measurement devices and maintenance. To solve this problem, this paper proposes the SMS data transmission protocol which allows multiple data collecting device to manage effectively including implementation method of cdma-based environmental information monitoring system. Also this paper shows operational safety of the proposed protocol and analyzes efficiency of data transfer and operating using SMS.

A hybrid deep neural network compression approach enabling edge intelligence for data anomaly detection in smart structural health monitoring systems

  • Tarutal Ghosh Mondal;Jau-Yu Chou;Yuguang Fu;Jianxiao Mao
    • Smart Structures and Systems
    • /
    • v.32 no.3
    • /
    • pp.179-193
    • /
    • 2023
  • This study explores an alternative to the existing centralized process for data anomaly detection in modern Internet of Things (IoT)-based structural health monitoring (SHM) systems. An edge intelligence framework is proposed for the early detection and classification of various data anomalies facilitating quality enhancement of acquired data before transmitting to a central system. State-of-the-art deep neural network pruning techniques are investigated and compared aiming to significantly reduce the network size so that it can run efficiently on resource-constrained edge devices such as wireless smart sensors. Further, depthwise separable convolution (DSC) is invoked, the integration of which with advanced structural pruning methods exhibited superior compression capability. Last but not least, quantization-aware training (QAT) is adopted for faster processing and lower memory and power consumption. The proposed edge intelligence framework will eventually lead to reduced network overload and latency. This will enable intelligent self-adaptation strategies to be employed to timely deal with a faulty sensor, minimizing the wasteful use of power, memory, and other resources in wireless smart sensors, increasing efficiency, and reducing maintenance costs for modern smart SHM systems. This study presents a theoretical foundation for the proposed framework, the validation of which through actual field trials is a scope for future work.

Prototype for the Weather Monitoring System with Web - Based Data Management - Construction and Operation

  • Kim, Jinwoo;Kim, Jin-Young;Oh, Jai-Ho;Kim, Do-Yong
    • Atmosphere
    • /
    • v.20 no.2
    • /
    • pp.153-160
    • /
    • 2010
  • In this paper, an attempt has been made to build and test self-configuring weather sensor networks and internet based observation system to gather atmospheric data. The aim is to provide integrated or real-time weather information in standard form using network data access protocol. This system was successfully developed to record weather information both digital as well as visual using sensor network and web-enabled surveillance cameras. These data were transformed by network based data access protocol to access and utilize for public domain. The competed system has been successfully utilized to monitor different types of weather. The results show that this is one of the most useful weather monitoring system.

A remotely controllable structural health monitoring framework for bridges using 3.5 generation mobile telecommunication technology

  • Koo, Ki-Young;Hong, Jun-Young;Park, Seunghee;Lee, Jong-Jae;Yun, Chung-Bang
    • Smart Structures and Systems
    • /
    • v.5 no.2
    • /
    • pp.193-207
    • /
    • 2009
  • A framework for structural health monitoring (SHM) systems is presented utilizing a recent 3.5 generation mobile telecommunication technology, HSDPA (High Speed Downlink Packet Access). It may be effectively applied to monitoring bridges, cut-slopes, and other facilities located in rural areas where the conventional Internet service is not readily available, since HSDPA is currently commercialized in 86 countries to make the Internet access possible in anywhere the mobile phone service is available. The proposed SHM framework is also incorporating remote desktop software to have remote control/operation of the SHM systems. The feasibility of the proposed framework has been demonstrated by field tests on a highway bridge in operation. One can expect that fast advances in the mobile telecommunication technology will further enhance the performance of the SHM network using the proposed framework for bridges and other facilities located in remote areas without the conventional wired Internet service.

Development of Displacement Measuring Sensor Module to Monitoring About Variation and Distortion for Bridge Infrastructure at Wireless Communication Environmental (교량구조물의 구조적 변형을 측정하는 무선통신기반 변위센서모듈 개발)

  • Ryu, Seung-Ki;Moon, Hak-Yong
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.5
    • /
    • pp.87-95
    • /
    • 2010
  • Lots of bridge structure generated the change of outward formation according to durability capability and decrepitude by long use. Especially, in case of the typhoon, snowing and earthquake is going to make rapidly more worse formation about the old structural facilitys. Also, outward formation by irregular and micro-distortion in bridge structure could not easily checked by normal diagnostics method. As a result, performance-capability of structure facility is getting to make a decline in standard of structure performance. Recently, real-time monitoring technology by wireless environment go into the study of irregular movement for structure facility. This paper presents the development of sensor to displacement checking about bridge structure. Sensing method of developed sensor put bring into the gyroscope technology using the acceleration speed and angular acceleration speed. This paper also will simulated to verified the monitoring capability of developed sensor against random vibration, frequency and distortion in simulated equipment.

Implementation of Complex Growth-environment Control System in Greenhouse (온실 복합생장환경 관제 시스템 구현)

  • Cho, Hyun Wook;Cho, Jong Sik;Park, In Gon;Seo, Beom Seok;Kim, Chan Woo;Shin, Chang Sun
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.7 no.1
    • /
    • pp.1-9
    • /
    • 2011
  • In this paper, Wireless sensor network technology applied to various greenhouse agro-industry items such as horticulture and local specialty etc., we was constructed automatic control system for optimum growth environment by measuring growth status and environmental change. existing monitoring systems of greenhouse gather information about growth environment depends on the temperature. but in this system, Can be efficient collection and control of information to construct wireless sensor network by growth measurement sensor and environment monitoring sensor inside of the greenhouse. The system is consists of sensor manager for information processing, an environment database that stores information collected from sensors, the GUI of show the greenhouse status, it gather soil and environment information to soil and environment(including weather) sensors, growth measurement sensor. In addition to support that soil information service shows the temperature, moisture, EC, ph of soil to user through the interaction of obtained data and Complex Growth Environment information service for quality and productivity can prevention and response by growth disease or disaster of greenhouse agro-industry items how temperature, humidity, illumination acquiring informationin greenhouse(strawberry, ginseng). To verify the executability of the system, constructing the complex growth environment measurement system using wireless sensor network in greenhouse and we confirmed that it is can provide our optimized growth environment information.

Design of In-situ Self-diagnosable Smart Controller for Integrated Algae Monitoring System

  • Lee, Sung Hwa;Mariappan, Vinayagam;Won, Dong Chan;Shin, Jaekwon;Yang, Seungyoun
    • International Journal of Advanced Culture Technology
    • /
    • v.5 no.1
    • /
    • pp.64-69
    • /
    • 2017
  • The rapid growth of algae occurs can induce the algae bloom when nutrients are supplied from anthropogenic sources such as fertilizer, animal waste or sewage in runoff the water currents or upwelling naturally. The algae blooms creates the human health problem in the environment as well as in the water resource managers including hypoxic dead zones and harmful toxins and pose challenges to water treatment systems. The algal blooms in the source water in water treatment systems affects the drinking water taste & odor while clogging or damaging filtration systems and putting a strain on the systems designed to remove algal toxins from the source water. This paper propose the emerging In-Situ self-diagnosable smart algae sensing device with wireless connectivity for smart remote monitoring and control. In this research, we developed the In-Site Algae diagnosable sensing device with wireless sensor network (WSN) connectivity with Optical Biological Sensor and environmental sensor to monitor the water treatment systems. The proposed system emulated in real-time on the water treatment plant and functional evaluation parameters are presented as part of the conceptual proof to the proposed research.

An Efficient Implementation of Key Frame Extraction and Sharing in Android for Wireless Video Sensor Network

  • Kim, Kang-Wook
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.9
    • /
    • pp.3357-3376
    • /
    • 2015
  • Wireless sensor network is an important research topic that has attracted a lot of attention in recent years. However, most of the interest has focused on wireless sensor network to gather scalar data such as temperature, humidity and vibration. Scalar data are insufficient for diverse applications such as video surveillance, target recognition and traffic monitoring. However, if we use camera sensors in wireless sensor network to collect video data which are vast in information, they can provide important visual information. Video sensor networks continue to gain interest due to their ability to collect video information for a wide range of applications in the past few years. However, how to efficiently store the massive data that reflect environmental state of different times in video sensor network and how to quickly search interested information from them are challenging issues in current research, especially when the sensor network environment is complicated. Therefore, in this paper, we propose a fast algorithm for extracting key frames from video and describe the design and implementation of key frame extraction and sharing in Android for wireless video sensor network.

Temperature Data Visualization for Condition Monitoring based on Wireless Sensor Network (무선 센서 네트워크 기반의 상태 모니터링을 위한 온도 데이터 시각화)

  • Seo, Jung-Hee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.2
    • /
    • pp.245-252
    • /
    • 2020
  • Unexpected equipment defects can cause a huge economic losses in the society at large. Although condition monitoring can provide solutions, the signal processing algorithms must be developed to predict mechanical failures using data acquired from various sensors attached to the equipment. The signal processing algorithms used in a condition monitoring requires high computing efficiency and resolution. To improve condition monitoring on a wireless sensor network(WSN), data visualization can maximize the expressions of the data characteristics. Thus, this paper proposes the extraction of visual feature from temperature data over time using condition monitoring based on a WSN to identify environmental conditions of equipment in a large-scale infrastructure. Our results show that time-frequency analysis can visually track temperature changes over time and extract the characteristics of temperature data changes.