DOI QR코드

DOI QR Code

DNA-functionalized single-walled carbon nanotube-based sensor array for gas monitoring

  • Zhang, Wenjun (Department of Civil & Environmental Engineering, Northeastern University) ;
  • Liu, Yu (Department of Electrical & Computer Engineering, Northeastern University) ;
  • Wang, Ming. L (Department of Civil & Environmental Engineering, Northeastern University)
  • Received : 2012.06.11
  • Accepted : 2012.11.20
  • Published : 2013.07.25

Abstract

Nine deoxyribonucleic acid (DNA) sequences were used to functionalize single-walled carbon nanotube (SWNT) sensors to detect the trace amount of methanol, acetone, and HCl in vapor. DNA 24 Ma (24 randomly arranged nitrogenous bases with one amine at each end of it) decorated SWNT sensor and DNA 24 A (only adenine (A) base with a length of 24) decorated SWNT sensor have demonstrated the largest sensing responses towards acetone and HCl, respectively. On the other hand, for the DNA GT decorated SWNT sensors with different sequence lengths, the optimum DNA sequence length for acetone and HCl sensing is 32 and 8, separately. The detection of methanol, acetone, and HCl have identified that DNA functionalized SWNT sensors exhibit great selectivity, sensitivity, and repeatability with an accuracy of more than 90%. Further, a sensor array composed of SWNT functionalized with various DNA sequences was utilized to identify acetone and HCl through pattern recognition. The sensor array is a combination of four different DNA functionalized SWNT sensors and two bare SWNT sensors (work as reference). This wireless sensing system has enabled real-time gas monitoring and air quality assurance for safety and security.

Keywords

Acknowledgement

Supported by : NSF

References

  1. Abraham, J.K., Philip, B., Witchurch, A., Varadan, V.K. and Reddy, C.C. (2004), "A compact wireless gas sensor using a carbon nanotube/PMMA thin film chemiresistor", Smart Mater Struct, 13(5), 1045-1049. https://doi.org/10.1088/0964-1726/13/5/010
  2. Appenzeller, J., Martel, R., Derycke, V., Radosavjevic, M., Wind, S., Neumayer, D. and Avouris, P. (2002), "Carbon nanotubes as potential building blocks for future nanoelectronics", Microelectron Eng., 64(1-4), 391-397. https://doi.org/10.1016/S0167-9317(02)00813-4
  3. Aravind, S.S.J. and Ramaprabhu, S. (2011), "Noble metal dispersed multiwalled carbon nanotubes immobilized ss-DNA for selective detection of dopamine", Sensor. Actuat. B-Chem., 155(2), 679-686. https://doi.org/10.1016/j.snb.2011.01.029
  4. Avouris, P., Chen, Z.H. and Perebeinos, V. (2007), "Carbon-based electronics", Nature Nanotechnol., 2(10), 605-615. https://doi.org/10.1038/nnano.2007.300
  5. Bekyarova, E., Davis, M., Burch, T., Itkis, M.E., Zhao, B., Sunshine, S. and Haddon, R.C. (2004), "Chemically functionalized single-walled carbon nanotubes as ammonia sensors", J. Phys. Chem. B, 108 (51), 19717-19720. https://doi.org/10.1021/jp0471857
  6. Bekyarova, E., Kalinina, I., Itkis, M.E., Beer, L., Cabrera, N. and Haddon, R.C. (2007), "Mechanism of ammonia detection by chemically functionalized single-walled carbon nanotubes: in situ electrical and optical study of gas analyte detection", J. Am. Chem. Soc., 129(35), 10700-10706. https://doi.org/10.1021/ja0703271
  7. Bekyarova, E., Kalinina, I., Sun, X.B., Shastry, T., Worsley, K., Chi, X.L., Itkis, M.E. and Haddon, R.C. (2010), "Chemically engineered single-walled carbon nanotube materials for the electronic detection of hydrogen chloride", Adv. Mater., 22(7), 848-852. https://doi.org/10.1002/adma.200903427
  8. Besteman, K., Lee, J.O., Wiertz, F.G.M., Heering, H.A. and Dekker, C. (2003), "Enzyme-coated carbon nanotubes as single-molecule biosensors", Nano Lett., 3(6), 727-730. https://doi.org/10.1021/nl034139u
  9. Bradley, K., Gabriel, J.C.P., Star, A. and Gruner, G. (2003), "Short-channel effects in contact-passivated nanotube chemical sensors", Appl. Phys, Lett., 83(18), 3821-3823. https://doi.org/10.1063/1.1619222
  10. Britto, P.J., Santhanam, K.S.V. and Ajayan, P.M. (1996), "Carbon nanotube electrode for oxidation of dopamine", Bioelectroch Bioener, 41(1), 121-125. https://doi.org/10.1016/0302-4598(96)05078-7
  11. Britto, P.J., Santhanam, K.S.V., Rubio, A., Alonso, J.A. and Ajayan, P.M. (1999), "Improved charge transfer at carbon nanotube electrodes", Adv. Mater., 11(2), 154-157. https://doi.org/10.1002/(SICI)1521-4095(199902)11:2<154::AID-ADMA154>3.0.CO;2-B
  12. Cao, W.Q. and Duan, Y.X. (2006), "Breath analysis: Potential for clinical diagnosis and exposure assessment", Clin Chem., 52(5), 800-811. https://doi.org/10.1373/clinchem.2005.063545
  13. Chen, C.L., Yang, C.F., Agarwal, V., Kim, T., Sonkusale, S., Busnaina, A., Chen, M. and Dokmeci, M.R. (2010), "DNA-decorated carbon-nanotube-based chemical sensors on complementary metal oxide semiconductor circuitry", Nanotechnology, 21(9).
  14. Choi, W. B., Chung, D.S., Kang, J.H., Kim, H.Y., Jin, Y.W., Han, I.T., Lee, Y.H., Jung, J.E., Lee, N.S., Park, G.S. and Kim, J.M. (1999), "Fully sealed, high-brightness carbon-nanotube field-emission display", Appl. Phys. Lett., 75(20), 3129-3131. https://doi.org/10.1063/1.125253
  15. Close, G.F., Yasuda, S., Paul, B., Fujita, S. and Wong, H.S.P. (2008), "A 1 GHz integrated circuit with carbon nanotube interconnects and silicon transistors", Nano Lett., 8(2), 706-709. https://doi.org/10.1021/nl0730965
  16. Collins, P.G., Bradley, K., Ishigami, M. and Zettl, A. (2000), "Extreme oxygen sensitivity of electronic properties of carbon nanotubes",Science , 287(5459), 1801-1804. https://doi.org/10.1126/science.287.5459.1801
  17. Daniel, S., Rao, T.P., Rao, K.S., Rani, S.U., Naidu, G.R.K., Lee, H.Y. and Kawai, T. (2007), "A review of DNA functionalized/grafted carbon nanotubes and their characterization", Sensor. Actuat. B-Chem., 122 (2), 672-682. https://doi.org/10.1016/j.snb.2006.06.014
  18. Davis, J.J., Coles, R.J. and Hill, H.A.O. (1997), "Protein electrochemistry at carbon nanotube electrodes", J. Electroanal Chem., 440(1-2), 279-282.
  19. Franklin, N.R., Li, Y.M., Chen, R.J., Javey, A. and Dai, H.J. (2001), "Patterned growth of single-walled carbon nanotubes on full 4-inch wafers", Appl. Phys. Lett., 79(27), 4571-4573. https://doi.org/10.1063/1.1429294
  20. Frederick, L.J., Schulte, P.A. and Apol, A. (1984), "Investigation and control of occupational hazards associated with the use of spirit duplicators", Am. Ind. Hyg. Assoc. J., 45(1), 51-55. https://doi.org/10.1080/15298668491399361
  21. Fukuda, T., Arai, F. and Dong, L.X. (2003), "Assembly of nanodevices with carbon nanotubes through nanorobotic manipulations", P. IEEE, 91(11), 1803-1818.
  22. Godish, T. (1989), Indoor air pollution control, Lewis Publishers: Chelsea, Mich.
  23. Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nature, 354 (6348), 56-58. https://doi.org/10.1038/354056a0
  24. Iwai, T. and Awano, Y. (2007), "Carbon nanotube bumps for thermal electric conduction in transistor", Fujitsu. Sci. Tech. J., 43(4), 508-515.
  25. Izadi-Najafabadi, A., Yamada, T., Futaba, D.N., Hatori, H., Iijima, S. and Hata, K. (2010), "Impact of cell-voltage on energy and power performance of supercapacitors with single-walled carbon nanotube electrodes", Electrochem. Commun., 12(12), 1678-1681. https://doi.org/10.1016/j.elecom.2010.09.020
  26. Jeng, E.S., Barone, P.W., Nelson, J.D. and Strano, M.S. (2007), "Hybridization kinetics and thermodynamics of DNA adsorbed to individually dispersed single-walled carbon nanotubes", Small, 3(9), 1602-1609. https://doi.org/10.1002/smll.200700141
  27. Johnson, R.R., Johnson, A.T.C. and Klein, M.L. (2008), "Probing the structure of DNA-carbon nanotube hybrids with molecular dynamics", Nano Lett., 8(1), 69-75. https://doi.org/10.1021/nl071909j
  28. Johnson, A.T.C., Khamis, S.M., Preti, G., Kwak, J. and Gelperin, A. (2010), "DNA-Coated Nanosensors for Breath Analysis", IEEE Sens J., 10(1), 159-166. https://doi.org/10.1109/JSEN.2009.2035670
  29. Khamis, S.M., Johnson, R.R., Luo, Z.T. and Johnson, A.T.C. (2010), "Homo-DNA functionalized carbon nanotube chemical sensors", J. Phys. Chem. Solids, 71(4), 476-479. https://doi.org/10.1016/j.jpcs.2009.12.015
  30. Kim, S.N., Rusling, J.F. and Papadimitrakopoulos, F. (2007), "Carbon nanotubes for electronic and electrochemical detection of biomolecules", Adv. Mater., 19(20), 3214-3228. https://doi.org/10.1002/adma.200700665
  31. Kong, J., Franklin, N.R., Zhou, C.W., Chapline, M.G., Peng, S., Cho, K.J. and Dai, H.J. (2000), "Nanotube molecular wires as chemical sensors", Science, 287(5453), 622-625. https://doi.org/10.1126/science.287.5453.622
  32. Kong, J., Chapline, M.G. and Dai, H.J. (2001), "Functionalized carbon nanotubes for molecular hydrogen sensors", Adv. Mater., 13(18), 1384-1386. https://doi.org/10.1002/1521-4095(200109)13:18<1384::AID-ADMA1384>3.0.CO;2-8
  33. Kordas, K., Toth, G., Moilanen, P., Kumpumaki, M., Vahakangas, J., Uusimaki, A., Vajtai, R. and Ajayan, P.M. (2007), "Chip cooling with integrated carbon nanotube microfin architectures", Appl. Phys. Lett., 90 (12).
  34. Liu, Z., Winters, M., Holodniy, M. and Dai, H.J. (2007), "siRNA delivery into human T cells and primary cells with carbon-nanotube transporters", Angew. Chem. Int. Edit., 46(12), 2023-2027. https://doi.org/10.1002/anie.200604295
  35. Liu, Y., Chen, C., Agarwal, V., Sonkusale, S., Wang, M.L. and Dokmeci, M.R. (2011), "Single chip Nanotube sensors for chemical agent monitoring", IEEE ,795-798.
  36. Liu, Y., Chen, M., Mohebbi, M., Wang, M.L. and Dokmeci, M.R. (2011), In the effect of sequence length on DNA decorated CNT gas sensors, Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), 2011 16th International, 5-9 June .
  37. Mahar, B., Laslau, C., Yip, R. and Sun, Y. (2007), "Development of carbon nanotube-based sensors - a review", IEEE Sens J., 7(1-2), 266-284. https://doi.org/10.1109/JSEN.2006.886863
  38. Martel, R., Schmidt, T., Shea, H.R., Hertel, T. and Avouris, P. (1998), "Single- and multi-wall carbon nanotube field-effect transistors", Appl. Phys. Lett., 73(17), 2447-2449. https://doi.org/10.1063/1.122477
  39. Meng, S., Maragakis, P., Papaloukas, C. and Kaxiras, E. (2007), "DNA nucleoside interaction and identification with carbon nanotubes", Nano Lett., 7(1), 45-50. https://doi.org/10.1021/nl0619103
  40. Novak, J.P., Snow, E.S., Houser, E.J., Park, D., Stepnowski, J.L. and McGill, R.A. (2003), "Nerve agent detection using networks of single-walled carbon nanotubes", Appl. Phys. Lett., 83(19), 4026-4028. https://doi.org/10.1063/1.1626265
  41. Park, J.Y., Rosenblatt, S., Yaish, Y., Sazonova, V., Ustunel, H., Braig, S., Arias, T.A., Brouwer, P.W. and McEuen, P.L. (2004), "Electron-phonon scattering in metallic single-walled carbon nanotubes", Nano Lett., 4(3), 517-520. https://doi.org/10.1021/nl035258c
  42. Pengfei, Q.F., Vermesh, O., Grecu, M., Javey, A., Wang, O., Dai, H.J., Peng, S. and Cho, K.J. (2003), "Toward large arrays of multiplex functionalized carbon nanotube sensors for highly sensitive and selective molecular detection", Nano Lett., 3(3), 347-351. https://doi.org/10.1021/nl034010k
  43. Pohl, H.A. (1978), Dielectrophoresis : the behavior of neutral matter in nonuniform electric fields. Cambridge University Press: Cambridge ; New York.
  44. Prato, M., Kostarelos, K. and Bianco, A. (2008), "Functionalized carbon nanotubes in drug design and discovery", Accounts Chem. Res., 41(1), 60-68. https://doi.org/10.1021/ar700089b
  45. Roberts, M.E., LeMieux, M.C. and Bao, Z.N. (2009), "Sorted and aligned single-walled carbon nanotube networks for transistor-based aqueous chemical sensors", Acs. Nano, 3(10), 3287-3293. https://doi.org/10.1021/nn900808b
  46. Rueckes, T., Kim, K., Joselevich, E., Tseng, G.Y., Cheung, C.L. and Lieber, C.M. (2000), "Carbon nanotube-based nonvolatile random access memory for molecular computing", Science, 289(5476), 94-97. https://doi.org/10.1126/science.289.5476.94
  47. Sahay, P. P. (2005), "Zinc oxide thin film gas sensor for detection of acetone", J. Mater Sci., 40(16), 4383-4385. https://doi.org/10.1007/s10853-005-0738-0
  48. Saito, S. (1997), "Carbon nanotubes for next-generation electronics devices", Science, 278(5335), 77-78. https://doi.org/10.1126/science.278.5335.77
  49. Salgado, G.G., Becerril, T.D., Santiesteban, H.J. and Andres, E.R. (2006), "Porous silicon organic vapor sensor", Opt Mater, 29(1), 51-55. https://doi.org/10.1016/j.optmat.2006.03.012
  50. Snow, E.S., Perkins, F.K., Houser, E.J., Badescu, S.C. and Reinecke, T.L. (2005), "Chemical detection with a single-walled carbon nanotube capacitor", Science, 307(5717), 1942-1945. https://doi.org/10.1126/science.1109128
  51. Staii, C. and Johnson, A.T. (2005), "DNA-decorated carbon nanotubes for chemical sensing", Nano Lett., 5 (9), 1774-1778. https://doi.org/10.1021/nl051261f
  52. Tans, S.J., Verschueren, A.R.M. and Dekker, C. (1998), "Room-temperature transistor based on a single carbon nanotube", Nature, 393(6680), 49-52. https://doi.org/10.1038/29954
  53. Thompson, S.E. and Parthasarathy, S. (2006), "Moore's law: the future of Si microelectronics", Mater. Today, 9(6), 20-25.
  54. Wen, Z. and Tian-mo, L. (2010), "Gas-sensing properties of SnO2-TiO2-based sensor for volatile organic compound gas and its sensing mechanism", Physica B, 405(5), 1345-1348. https://doi.org/10.1016/j.physb.2009.11.086
  55. White, J., Truesdell, K., Williams, L.B., AtKisson, M.S. and Kauer, J.S. (2008), "Solid-state, dye-labeled DNA detects volatile compounds in the vapor phase", Plos. Biol., 6(1), 30-36. https://doi.org/10.1371/journal.pbio.0060030
  56. Williams, P.T. (1990), "A Review of Pollution from Waste Incineration", J. Inst. Water Env. Man., 4(1), 26-34. https://doi.org/10.1111/j.1747-6593.1990.tb01554.x
  57. Wong, H.S.P. (2002), "Beyond the conventional transistor", Ibm J. Res. Dev., 46(2-3), 133-168. https://doi.org/10.1147/rd.462.0133
  58. Wong, S.S., Joselevich, E., Woolley, A.T., Cheung, C.L. and Lieber, C.M. (1998), "Covalently functionalized nanotubes as nanometre-sized probes in chemistry and biology", Nature, 394(6688), 52-55. https://doi.org/10.1038/27873
  59. Zhang, Y.B., Kanungo, M.; Ho, A.J., Freimuth, P., van der Lelie, D., Chen, M., Khamis, S.M., Datta, S.S., Johnson, A.T.C., Misewich, J.A. and Wong, S.S. (2007), "Functionalized carbon nanotubes for detecting viral proteins", Nano Lett., 7(10), 3086-3091. https://doi.org/10.1021/nl071572l
  60. Zhao, X. and Johnson, J.K. (2007), "Simulation of adsorption of DNA on carbon nanotubes", J. Am. Chem. Soc., 129(34), 10438-10445. https://doi.org/10.1021/ja071844m
  61. Zheng, M., Jagota, A., Semke, E.D., Diner, B.A., Mclean, R.S., Lustig, S.R., Richardson, R.E. and Tassi, N. G. (2003), "DNA-assisted dispersion and separation of carbon nanotubes", Nature Mater., 2(5), 338-342. https://doi.org/10.1038/nmat877
  62. Zheng, M., Jagota, A., Strano, M.S., Santos, A.P., Barone, P., Chou, S.G., Diner, B.A., Dresselhaus, M.S., McLean, R.S., Onoa, G.B., Samsonidze, G.G., Semke, E.D., Usrey, M. and Walls, D.J. (2003), "Structure-based carbon nanotube sorting by sequence-dependent DNA assembly", Science, 302(5650), 1545-1548. https://doi.org/10.1126/science.1091911

Cited by

  1. Ranking of Molecular Biomarker Interaction with Targeted DNA Nucleobases via Full Atomistic Molecular Dynamics vol.6, pp.1, 2016, https://doi.org/10.1038/srep18659
  2. Materiomics for Oral Disease Diagnostics and Personal Health Monitoring: Designer Biomaterials for the Next Generation Biomarkers vol.20, pp.1, 2016, https://doi.org/10.1089/omi.2015.0144
  3. DNA-Functionalized Single-Walled Carbon Nanotube-Based Sensor Array for Breath Analysis 2016, https://doi.org/10.18178/ijeee.4.2.177-180