• Title/Summary/Keyword: winter tree

Search Result 125, Processing Time 0.029 seconds

The Effect of Maleic Hydrazide Spraying upon the Winter Hardness of Twig of Mulberry Tree (상수지의 내한성 증대에 미치는 억제제 Maleic Hydrazide의 살포효과)

  • 류근섭;오준식
    • Journal of Sericultural and Entomological Science
    • /
    • v.13 no.2
    • /
    • pp.95-97
    • /
    • 1971
  • This study was carried out to investigate the effect of maleic hydrazide upon the winter hardness on leaves spraying after harvesting of autumn rearing season. The results obtained are as follows; 1. Spraying over 0.25% increased starch in all tissues of the twig than that in the not-sprdyed control twig. 2. Spraying time of central district was the middle ten days of september. 3. There were effect on spraying of all the treatment variety Suwon No. 4. 4. Winter hardiness by variety was strong in the order of Suwon No. 4, Gae Ryang Su ban, Il Jire, Rosang.

  • PDF

Effects of Pruning Season on Compartmentalization of Pruning Wounds in Acer palmatum and Pinus strobus

  • Lee, Kyu-Hwa;Lee, Kyung-Joon
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.2
    • /
    • pp.226-234
    • /
    • 2010
  • This study was conducted to examine the effects of pruning season on the compartmentalization of pruning wounds in Acer palmatum and Pinus strobus. A total of eighty five field-grown trees for each species were allocated to five different seasons, early- and late-winter, mid-spring, mid- and late-summer, for pruning treatments. Wound closure rate (WCR) of the two species for one year after treatment, area of discolored stem tissue on the medial longitudinal surface and cambial dieback length under the pruning wound of A. palmatum were measured. Changes of total phenols and variations of extractives, holocellulose and lignin at the treated branch unions were examined. In WCR of A. palmatum, late-winter (March, 39.8%) and mid-spring (May, 39.7%) were higher than any other seasons, while early-winter (November, 28.4%) was significantly lower than late-winter and mid-spring. P. strobus showed similar results with A. palmatum. The WCR of early-winter (57.2%) was the lowest significantly among the five seasons, and mid-spring (73.5%) and late-winter (71.4%) showed higher a WCR than other seasons. In the discolored/wound area ratio of A. palmatum, early-winter (73.2%) was the highest by far, and mid- (July) and latesummer (September, 36.7%, respectively) were the lowest among the five seasons. In the length of cambial dieback, two dormant seasons, early- and late-winter were longer than any other seasons. Phenol contents at the treated branch union were changed in line with the seasonal fluctuation of the tree. Total phenols in the below core of the treated union were higher than those of the branch union with living branch, while little differences were seen in the above core. At the branch core of the treated union, phenols of A. palmatum decreased one month after the treatments, but P. strobus maintained similar to or a little higher than those at the controls. The major changes in chemical composition at pruning wounds were extractives and lignin increased by less than 20% in A. palmatum, while extractives in P. strobus remarkably increased by 70%.

Dendroclimatological Investigation of High Altitude Himalayan Conifers and Tropical Teak In India

  • Borgaonkar, H.P.;Sikder, A.B.;Ram, Somaru;Kumar, K. Rupa;Pant, G.B.
    • The Korean Journal of Quaternary Research
    • /
    • v.21 no.1
    • /
    • pp.15-26
    • /
    • 2007
  • A wide tree-ring data network from Western Himalayan region as well as from Central and Peninsular India have been established by the Indian Institute of Tropical Meteorology (IITM), Pune, India. This includes several ring width and density chronologies of Himalayan conifers (Pinus, Picea, Cedrus, Abies)covering entire area of Western Himalaya and teak (Tectona grandis L.F.) from central and peninsular India. Many of these chronologies go back to $15^{th}$ century. Tree-ring based reconstructed pre-monsoon (March-April-May) summer climate of Western Himalaya do not show any significant increasing or decreasing trend since past several centuries. High altitude tree-ring chronologies near tree line-glacier boundary are sensitive to the winter temperature. Unprecedented higher growth in recent decades is closely associated with the warming trend over the Himalayan region. Dendroclimatic analysis of teak (Tectona grandis) from Central and Peninsular India show significant relationship with pre-monsoon and monsoon climate. Moisture index over the region indicates strong association with tree-ring variations rather than the direct influence of rainfall. It is evident that, two to three consecutive good monsoon years are capable of maintaining normal or above normal tree growth, even though the following year is low precipitation year.

  • PDF

Seasonal Variations in Tannin Profile of Tree Leaves

  • Rana, K.K.;Wadhwa, M.;Bakshi, M.P.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.8
    • /
    • pp.1134-1138
    • /
    • 2006
  • Forest tree leaves (12 different species) of semi hilly arid region of Punjab State were collected at 30-day interval throughout the year to assess the seasonal variations in tannin profile. Tannins were extracted and fractionated from fat free samples and data were analyzed statistically by $12{\times}12$ factorial design. The leaves of Anogeissus latifolia had the highest (p<0.05) concentration of total phenols (17.4%), net (15.9%) and hydrolysable (16.9%) tannins, followed by leaves of Acacia nilotica. Majority of the tree leaves selected had moderate levels (2-5%) of net tannins. Leaves of Carrisa had the highest (p<0.05) concentration of condensed tannins (CT), whereas the leaves of Anogeissus had the lowest (p<0.05) concentration of condensed tannins. The protein precipitable phenols (PPP) corresponded well with the net tannin content present in different tree leaves. Seasonal variation data revealed that in summer, net tannins and PPP decline in leaves of Bauhinia and Zizyphus whereas the net tannin content of Anogeissus and that of Carrisa increased during summer. The CT and PPP content in the leaves of Pheonix, Leucaena, Zizyphus and Ougenia increased in winter till spring season. Tree leaves generally had higher concentration of HT during summer months. It was concluded that leaves of leaves of A. nilotica, A. latifolia and L. leucocephala could serve as an excellent alternate feed stuffs for ruminants. However, leaves of Phoenix, Carrisa, Bauhinia and Dodonea should be avoided.

Seasonal Characteristics of Fecal Sites of the Siberian Flying Squirrel Pteromys volans

  • Han, Chang Wook;Lim, Sang Jin;Park, Hee Bok;Park, Yung Chul
    • Journal of Forest and Environmental Science
    • /
    • v.34 no.2
    • /
    • pp.184-187
    • /
    • 2018
  • Characteristics of fecal sites of the Siberian flying squirrel Pteromys volans was analyzed based on 132 sites of total 19 places. The fecal sites were more frequently found in winter (43.9%), and then followed by autumn (27.3%), spring (23.5%), and summer (5.3%). With the exception of summer, the fecal sites were more frequently found at the root collar than on the forked tree (p<0.01). Among 132 fecal sites, 88 sites (66.7%) were found on the rood collars and the other 44 sites (33.3%) were posited in the forked trees. Brown or red clay pellets were found at 44 fecal sites (33.4%) and 43 fecal sites (32.6%), and then black and yellow pellets were at 22 fecal sites (16.7%) and 19 fecal sites (14.3%), respectively. Green pellets were rarely found only at 4 sites (3.0%). Feces tend to have bright colors (brown, red clay and yellow) in winter and black in summer. Fecal sites with yellow pellets were much less found in all of the three seasons with the exception of winter, but highly increased in 25.4% in winter. The fecal sites with brown (33.4%) and red clay pellets (32.6%) were most frequently found through the four seasons.

Soil Environment's Impact on the Growth of Pinus thunbergii by Season in Urban Forests (도시림의 계절별 토양환경이 곰솔의 생육에 미치는 영향)

  • Kim, Seok-Kyu
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.4
    • /
    • pp.455-464
    • /
    • 2011
  • The purpose of this study is to clarify correlations between soil environments and the growth of trees in forests and thereon analyze effects of seasonal changes in such environments on such growth. To determine seasonal factors of soil affecting the Tree Vitality of Pinus thunbergii, first of all, the study designated the Tree Vitality as a dependent variable and soil hardness, moisture, pH, K, Na, Mg and Ca as independent variables. Then the study performed Pearson's coefficient analysis. To clarify what soil factors influence the seasonal growth of Pinus thunbergii multiple regression analysis is carried out, and findings are as follow; the growth of Pinus thunbergii was basically influenced by pH, followed by soil hardness in spring, K, followed by moisture in summer, and by soil hardness in winter. However, no soil factors affected the vitality at the significance level of 5% for t.

A Study on Dropping Behavior and Survey Improvement Methods for Siberian Flying Squirrel(Pteromys volans) (하늘다람쥐(Pteromys volans) 배설습성과 조사기법 개선방안 연구)

  • Woo, Donggul;Choi, Taeyoung;Lee, Sanggyu;Ha, Jeongok
    • Journal of Environmental Impact Assessment
    • /
    • v.22 no.6
    • /
    • pp.569-579
    • /
    • 2013
  • To identify the characteristics of the dropping habits and to provide improved methods for sign survey of Siberian flying squirrels Pteromys volans, an investigation was carried out in Jirisan National Park from April 2012 to May 2013. The latrines of study area were checked once a month and the characteristics of dropping behavior were camera trapped. The feces of Siberian flying squirrel were found on the point which tree forked, mostly from November to May. The squirrel actively presents in forked tree mainly on the September to April. The Siberian flying squirrel is found to be a typical nocturnal animal as it actively move between 6p.m. to 7a.m.. The study found that squirrel does feeding and dropping in the winter time on forked tree. On the point which tree forked could be a good place for the squirrel to hide from their predator when there is no leaf on the tree. Conducting the sign survey is advisable from November to May, as well as with the careful approach to the animals. As Siberian flying squirrel is an endangered species, adjusting the survey period is mandatory, especially when doing environmental impact assessment and a research on its dwelling areas.

Somatic Embryogenesis, Plant Regeneration, and Field Establishment from Tissue Culture of Winter Buds of 10-year-old Aralia elata (10년생(年生) 두릅나무의 동아(冬芽)를 이용(利用)한 체세포배(體細胞胚) 발생(發生), 식물체(植物體) 재생(再生) 및 단지(團地) 이식(移植))

  • Moon, Heung Kyu;Youn, Yang;Yi, Jae Seon
    • Journal of Korean Society of Forest Science
    • /
    • v.87 no.1
    • /
    • pp.57-61
    • /
    • 1998
  • Somatic embryo induction, plant regeneration, and field establishment were investigated from tissue cultured winter buds of a 10-year-old tree Aralia elata. Embryogenic calli were obtained from cultures of winter buds on MS medium supplemented with 2,4-D. A number of somatic embryos were regenerated from the calli on an embryo induction medium supplemented with 2,4-D and BA. Although abnormal somatic embryos were frequently observed, most of the embryos formed were morphologically normal. All somatic embryos at the later stage of maturity germinated successfully, but only 14% of them could be developed into plantlets on MS basal medium. The plants regenerated from the somatic embryos survived well in the field (survival rates : more than 95%) and have grown normally for three years after transplanting.

  • PDF

Leaf Litter Processing and Patterns of Shredder Distribution in Headwater Steams in Southeastern Korea (한국 남동지역 상류 하천에서의 낙엽 분해기작과 shredder 분포 유형)

  • Kim Hyun-woo;Gea-Jae Joo;Jong-hoon Choi
    • The Korean Journal of Ecology
    • /
    • v.19 no.6
    • /
    • pp.529-541
    • /
    • 1996
  • During the period of December 1992 (winter-spring) and from February 1995 (winter-spring), the leaf processing rates of oak (Quercus serrata) and tulip (Liriodendron tulipifera) tree was investigated in the headwater streams in southeastern part of Korea in conjunction with the distribution pattern of macroinvertebrate fauna. Using two types of bags ($10\times30cm$ with 5 g of dry leaves; open bag with holes, closed bag without holes), decomposition rates of oak and tulip tree by shredder and/or microbiota at a reatively undisturbed 2nd-order stream were compared, Regardless of leaf type, leaves in the open bage decomposed slightly faster than those in the closed bags. In the 1992 experiment, osk leaves decomposed much slower than tulip leaves (after 138 degree days, osk : closed, 0.006% loss/day ; open, 0.008 ; tulip: closed, 0.021 ; open, 0.023; n=2). The of the first experiment using oak leaves in 1995 were similar to those of the first experiment (after 151 degree days, oak: closed, 0.005% loss / day; open, 0.006; n=6). Over 50% of invertebrates from 122 leaf pack samples collected from 12 streams during the winter period of 1994 were identified as shredders (shredder, 56.2; collector, 32.7; scraper, 8.65; predator, 2.45%). Among shredders, Gammarus sp. and Tipula sp. were dominant species in terms of number and biomass (8.2 ind./g, 1.0 ind./g AFDW of leaves). Among many physico-chemical parameters, the width of stream channel was found to be the most influential factor in the distribution of Gammarus and Tipula (Gammarus: r=-0.34, P<0.001;Tipula:r=0.40, P<0.001). Considering the fact that oak is one the dominant riparian vegetation in the southeastern part of korea, the patterns of oak processing and shredder distribution shown in theis study may well represent some of the important characteristics of headwater steams in southeastern Korea.

  • PDF

Deep Learning Based Tree Recognition rate improving Method for Elementary and Middle School Learning

  • Choi, Jung-Eun;Yong, Hwan-Seung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.12
    • /
    • pp.9-16
    • /
    • 2019
  • The goal of this study is to propose an efficient model for recognizing and classifying tree images to measure the accuracy that can be applied to smart devices during class. From the 2009 revised textbook to the 2015 revised textbook, the learning objective to the fourth-grade science textbook of elementary schools was added to the plant recognition utilizing smart devices. In this study, we compared the recognition rates of trees before and after retraining using a pre-trained inception V3 model, which is the support of the Google Inception V3. In terms of tree recognition, it can distinguish several features, including shapes, bark, leaves, flowers, and fruits that may lead to the recognition rate. Furthermore, if all the leaves of trees may fall during winter, it may challenge to identify the type of tree, as only the bark of the tree will remain some leaves. Therefore, the effective tree classification model is presented through the combination of the images by tree type and the method of combining the model for the accuracy of each tree type. I hope that this model will apply to smart devices used in educational settings.