• Title/Summary/Keyword: winter daytime and nighttime

Search Result 55, Processing Time 0.021 seconds

Continuous Measurements of Aromatic VOCs in a Mid-eastern Region of Seoul during Winter 2002/2003 (방향족 휘발성 유기화합물의 겨울철 연속 관측 연구)

  • 최여진;오상인;김기현
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.5
    • /
    • pp.491-502
    • /
    • 2003
  • In the present work, the distribution characteristics of ambient volatile organic compounds (VOCs) were investigated at high temporal resolution from a monitoring station located in a mid-eastern area of Seoul. A total number of 587 samples were collected during December 2002 to January 2003. The measurements of VOC were conducted by a combination of on-line air sampling and thermal desorption unit (TDU) coupled with capillary GC/FID analysis. A total of five aromatic compounds (BTEX: benzene, toluene, ethylbenzene, m, p-xylene, and o-xylene) were measured routinely at hourly intervals during the whole study period. The mean concentrations of BTEX measured in our study period were found in the order: toluene (8.99 $\pm$5.38 ppb) > benzene (0.92$\pm$0.52 ppb) > m, p-xylene (0.51$\pm$0.34 ppb) > 0- xylene (0.48$\pm$0.35 ppb) > ethyl benzene (0.43$\pm$ 0.32 ppb). The BTEX concentrations were generally higher during the daytime than the nighttime, exhibiting certain patterns on a weekly basis. Results of our analysis indicate that the unusually high concentrations of toluene, while showing good correlations with other VOCs, can be a good indicator of air pollution in the study area.

Horizontal and vertical movement patterns of yellowtail (Seriola quinqueradiata) in the East Sea of Korea

  • Jikang Park;Won Young Lee;Seungjae Baek;Sung-Yong Oh
    • Fisheries and Aquatic Sciences
    • /
    • v.27 no.2
    • /
    • pp.76-86
    • /
    • 2024
  • The bio-logging method could be a valuable approach to studying the underwater movement of marine fish. We investigated the horizontal and vertical movement patterns of two yellowtails Seriola quinqueradiata weighing 8.7 kg and 9.5 kg with a popup satellite archival tag from October 2020 to January 2021 in the East Sea of Korea. Our results showed that a yellowtail migrated northward in October and November, and then shifted southward in mid-December. The average swimming depth and temperature of the fish monitored over 82 days were 24.9 ± 9.3 m (average ± SD) and 16.5 ± 1.9℃, respectively, and the total traveled distance was 1,172.4 km. The fish swam significantly deeper during the daytime (33.70 ± 14.80 m) than at nighttime (20.65 ± 8.44 m) from November to December (p < 0.05). These results suggest that the horizontal migratory route of yellowtails in accordance with the East Korea Warm Current which is the main branch of Tsushima Warm Current in the fall and early winter seasons, and showed significant diel vertical movement patterns from November to December.

A Study on Occurrence Frequency of Cloud for Altitude in the Central Region of the Korean Peninsula using Upper-Air Observation Data (고층기상관측자료를 이용한 한반도 중부지방의 고도별 구름 발생빈도 연구)

  • Kim, In Yong;Park, Hyeryeong;Kim, Min Hee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.716-723
    • /
    • 2019
  • It is crucial to understand the characteristics of cloud occurrence frequency for development of high precision guided missile using infrared imaging sensor. In this paper, we investigated the vertical structure of cloud for altitude using upper-air observation data. We find that cloud occurrence frequency is high at altitudes of 1.3 km and 9.5 km. Theses features have seasonal and temporal dependency. In the summer, cloud often occur more than average regardless of altitude. In the winter, low clouds occur frequently, and high clouds do not occur well. In temporal characteristics, clouds occur more frequently in daytime than in nighttime regardless of altitude. Many of clouds exist in single layer or double layers in the air. We also find that the 40 % of cloud occurrence frequency at high altitude when low clouds under altitude of 2 km cover entire sky.

Accuracy Assessment of Sea Surface Temperature from NOAA/AVHRR Data in the Seas around Korea and Error Characteristics

  • Park, Kyung-Ae;Lee, Eun-Young;Chung, Sung-Rae;Sohn, Eun-Ha
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.6
    • /
    • pp.663-675
    • /
    • 2011
  • Sea Surface Temperatures (SSTs) using the equations of NOAA (National Oceanic and Atmospheric Administration) / NESDIS (National Environmental Satellite, Data, and Information Service) were validated over the seas around Korea with satellite-tracked drifter data. A total 1,070 of matchups between satellite data and drifter data were acquired for the period of 2009. The mean rms errors of Multi- Channel SSTs (MCSSTs) and Non-Linear SSTs (NLSSTs) were evaluated to, in most of the cases, less than $1^{\circ}C$. However, the errors revealed dependencies on atmospheric and oceanic conditions. For the most part, SSTs were underestimated in winter and spring, whereas overestimated in summer. In addition to the seasonal characteristics, the errors also presented the effect of atmospheric moist that satellite SSTs were estimated considerably low ($-1.8^{\circ}C$) under extremely dry condition ($T_{11{\mu}m}-T_{12{\mu}m}$ < $0.3^{\circ}C$), whereas the tendency was reversed under moist condition. Wind forcings induced that SSTs tended to be higher for daytime data than in-situ measurements but lower for nighttime data, particularly in the range of low wind speeds. These characteristics imply that the validation of satellite SSTs should be continuously conducted for diverse regional applications.

The First Measurement of Seasonal Trends in the Equatorial Ionospheric Anomaly Trough at the CHUK GNSS Site During the Solar Maximum in 2014

  • Chung, Jong-Kyun;Yoo, Sung-Moon;Lee, Wookyoung
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.4
    • /
    • pp.287-293
    • /
    • 2016
  • The equatorial region of the Earth's ionosphere exhibits large temporal variations in electron density that have significant implications on satellite signal transmissions. In this paper, the first observation results of the variations in the trough of the equatorial ionospheric anomaly at the permanent Global Navigation Satellite System (GNSS) site in Chuuk (Geographic: $7.5^{\circ}N$, $151.9^{\circ}E$; Geomagnetic: $0.4^{\circ}N$) are presented. It was found that the daytime Global Positioning System (GPS) total electron content (TEC) values vary according to the 27 day period of solar rotation, and that these trends show sharp contrast with those of summer. The amplitudes of the semi-annual anomaly were 12.4 TECU (33 %) on $19^{th}$ of March and 8.8 TECU (23 %) on $25^{th}$ of October respectively, with a yearly averaged value of 38.0 TECU. The equinoctial asymmetry at the March equinox was higher than that at the October equinox rather than the November equinox. Daily mean TEC values were higher in December than in June, which could be interpreted as annual or winter anomalies. The nighttime GPS TEC enhancements during 20:00-24:00 LT also exhibited the semi-annual variation. The pre-midnight TEC enhancement could be explained with the slow loss process of electron density that is largely produced during the daytime of equinox. However, the significant peaks around 22:00-23:00 LT at the spring equinox require other mechanisms other than the slow loss process of the electron density.

Pollution Characteristics of PM2.5 Observed during Winter and Summer in Baengryeongdo and Seoul (겨울 및 여름철 백령도와 서울에서 측정한 PM2.5 오염 특성)

  • Yu, Geun-Hye;Park, Seung-Shik;Park, Jong Sung;Park, Seung Myeong;Song, In Ho;Oh, Jun;Shin, Hye Jung;Lee, Min Do;Lim, Hyung Bae;Kim, Hyun Woong;Choi, Jin Young
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.1
    • /
    • pp.38-55
    • /
    • 2018
  • Hourly measurements of $PM_{2.5}$ mass, organic and elemental carbon (OC and EC), and water-soluble ionic species were made at the air quality intensive monitoring stations in Baengryeongdo (BR) and Seoul (SL) during the winter (December 01~31, 2013) and summer (July 10~23, 2014) periods, to investigate the increase of $PM_{2.5}$ and secondary ionic species and the reasons leading to their increase during the two seasons. During winter, $PM_{2.5}$ and its major chemical species concentrations were higher at SL than at BR. Contribution of organic mass to $PM_{2.5}$ was approximately 1.7 times higher at BR than at SL, but the $NO_3{^-}$ contribution was two times higher at SL. Total concentration of secondary ionic species ($SO{_4}^{2-}$, $NO_3{^-}$, and $NH_4{^+}$) at BR and SL sites accounted for 29.1 and 40.1% of $PM_{2.5}$, respectively. However, during summer, no significant difference in chemical composition of $PM_{2.5}$ was found between the two sites with the exception of $SO{_4}^{2-}$. Total concentration of the secondary ionic species constituted on average 43.9% of $PM_{2.5}$ at BR and 53.0% at SL. A noticeable difference in chemical composition between the two sites during summer was attributed to $SO{_4}^{2-}$, with approximately twofold concentration and 10% higher contribution in SL. Low wind speed and high relative humidity were important factors in secondary formation of water-soluble ionic species during winter at SL, resulting in $PM_{2.5}$ increase. While the secondary formation during summer was attributed to strong photochemical processes in daytime and high relative humidity in nighttime hours. The increase of $PM_{2.5}$ and its secondary ionic species during the winter haze pollution period at SL was mainly caused either by long-range transport (LTP) from the eastern Chinese regions, or by local pollution. However, the increased $SO{_4}^{2-}$ and $NO_3{^-}$ during summer at SL were mainly caused by LTP, photochemical processes in daytime hours, and heterogeneous processes in nighttime hours.

The Long-term Variation Patterns of Atmospheric Mercury in Seoul, Korea from 1997 to 2002 (서울시 대기 중 수은농도의 장기변동 특성 1997~2002)

  • 김민영;김기현
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.2
    • /
    • pp.179-189
    • /
    • 2003
  • The concentration of gaseous elemental mercury (Hg) was measured concurrently with relevant environmental parameters from Yang-Jae monitoring station in Seoul during Sept. 1997 to June 2002. Although data collection was disrupted for certain periods, the grand mean concentration of Hg for this five year period was found at 5.32 $\pm$ 3.53 ng m$^{-3}$ (N = 27,170). Because of short resolution of data acquisition, we were able to examine the temporal variability of Hg at varying time scale. The diurnal variability of Hg, when investigated for each of those five years, indicated consistently the dominance of nighttime over daytime. If examined at seasonal scale, Hg level was systematically higher during winter/spring than summer/fall period. The results of this short-term variability were best explained by the combined effects of such factors as meteorological conditions (formation of inversion layer and seasonal changes) and anthropogenic source processes. However, examination of long-term variation Pattern was much more complicated to explain. Thus, extension of our study is needed to diagnose the future direction in long-term trend of Hg behavior.

Numerical Study on the Changes in Microscopic Meteorological Elements due to Land Use Variations in the Nakdong River Basin (낙동강 하천 토지이용 변화에 따른 미세규모 기상 요소의 변동에 관한 수치 연구)

  • Kim, Eun-Ji;Lee, Soon-Hwan
    • Journal of Environmental Science International
    • /
    • v.25 no.12
    • /
    • pp.1597-1611
    • /
    • 2016
  • A numerical assessment using mesoscale-CFD (computational fluid dynamics) coupled A2C (atmosphere to CFD) model was carried out to analyze the variation of microscopic air flow pattern due to the construction of the Chilgok barrage in the Nakdong River. Scenarios with air flow patterns were classified into pre- and post-construction. The increased width of the river due to the construction of the Chilgok barrage induced obvious changes in moisture and the thermal environment around the river. However, air temperature variation was restricted within an area along the windward side in the numerical assessment. The impact of barrage construction on air temperature tends to be stronger during the nighttime than the daytime. It also stronger during the winter than the summer. In the simulation, the convergence of mesoscale wind is more pronounced after barrage construction than before. This is caused by the change of heat flux pattern induced by the widening of the river. Although this work is a case study with restricted atmospheric stability conditions that has several limitations in the numerical simulations, the impacts of the land-use changes brought about by the construction of the barrage in the river acceptable.

Analysis of Time Variations in Relative Humidity around a Water Area Using Bowen Ratio

  • Kim, Ki-Young;Kim, Kyu-Rang;Kim, Hae-Dong
    • Journal of Environmental Science International
    • /
    • v.23 no.10
    • /
    • pp.1731-1743
    • /
    • 2014
  • The time variations in relative humidity observed at the Gangjeong (Goryeong) Reservoir in the Nakdong River over a one-year period (September 2012-August 2013) were analyzed with the Bowen ratio. The thermal vertical scale of the reservoir was also evaluated following Yamamoto's method. The study's results showed that the relative humidity at the reservoir was higher than that of the Daegu Meteorological Observatory (inland) all year round. The difference was slightly larger at nighttime (17-20 %) than at daytime (13-15 %) in all seasons except summer. The quantitative order of latent heat flux was summer, spring, autumn, and winter. This finding signifies that the thermal vertical scale of the reservoir corresponds to that of a shallow lake. The Bowen ratio was smallest at midday of the summer season. In other words, the net radiation energy was converted more as latent heat flux than sensible heat flux during a higher temperature period.

Effects of Temperature and Light Intensity on the Growth of Red Pepper(Capsicum annuum L.) Raised in Plastic House in Winter III. Variations in Physiological Function to the Varied Temperatures during Raising Seedlings of Red Pepper (동계 Plastic House 육묘 고추(Capsicum annuum L.)에서 온도와 광도가 생장에 미치는 영향 III. 고추 육묘시 온도변화에 따른 생리기능)

  • 정순주;소창호;권용웅
    • Journal of Bio-Environment Control
    • /
    • v.4 no.1
    • /
    • pp.9-16
    • /
    • 1995
  • The effect of day and night temperature on the seedlings growth as well as physiological responses of red pepper seedlings to temperature, such as uptake of water and nutrients, rates of photosynthesis and respiration of leaf and root were also investigated in growth cabinet. The results obtained were as follows ; 1. As the temperature dropped down to 12$^{\circ}C$, the uptake of water and nutrients, nitrate, phosphorus and potassium were decreased drastically. At 5$^{\circ}C$ there was virtually no uptake of water and nutrients. 2. Photosynthetic activity in the leaves of red pepper seedlings was increased gradually from 5$^{\circ}C$ to $25^{\circ}C$ and observed the highest photosynthetic activity at $25^{\circ}C$, but respiratory activity of leaf increased up to 3$0^{\circ}C$ and the same trend was observed in root respiratory activity. 3. Optimal combination of day and night temperature for shoot dry weight which is the decisive criterion of good seedlings of red pepper was found to be $25^{\circ}C$ at nighttime and 3$0^{\circ}C$ at daytime and then day/night temperature showed in the order of 25/25, 30/15, 15/25, 10/$25^{\circ}C$. No increment of shoot dry weight at 5$^{\circ}C$ in nighttime temperature observed regardless of daytime temperature.

  • PDF