• Title/Summary/Keyword: winter crop

Search Result 748, Processing Time 0.03 seconds

Effects of Crimson Clover, Hairy Vetch, and Rye Residue Mulch on Weed Occurrence, Soybean Growth, and Yield in Soybean Fields (콩 재배 시 크림손클로버, 헤어리벳치, 호밀 예취물 피복이 잡초 발생과 콩 생육 및 수량에 미치는 영향)

  • Lee, Ji-Hyun;Lee, Byung-Mo;Shim, Sang-In;Lee, Youn;Jee, Hyeong-Jin
    • Korean Journal of Weed Science
    • /
    • v.31 no.2
    • /
    • pp.167-174
    • /
    • 2011
  • Weed control using cover crops has advantages of agricultural and environmental aspects which prevent soil erosion, nitrogen supply, improving soil physical properties, reduction of nitrate leaching, organic supply and control of weed occurrence. In this study, we evaluated the inhibitory effects of cover crops on the weed occurrence, growth and yield of soybean in cover crop-soybean cropping system. The treatments were consisted of 4 different mulching system such as crimson clover (Trifolium incarnatum) residue, hairy vetch (Vicia villosa) residue, rye (Secale cereale) residue and Polyethylene plastic(P.E.) mulch with no mulch treatment (control). Three cover crops were grown throughout the winter and were cut in next spring. And then 13 days old soybean seedlings were transplanted in each treatment field on $4^{th}$ June. Crimson clover, hairy vetch and rye mulch treatments reduced weeds density compared to control (73.0%, 98.0% and 85.3% respectively), on $26^{th}$ May. However, weed inhibition rate of crimson clover mulch treatment was sharply decreased to 4.17% on $6^{th}$ August, while hairy vetch and rye mulch treatments were continued high weed inhibition rate with 87.6% and 72.0% respectively. There was no inhibition effect of perennial, winter annual and broadleaf weeds inhibition in crimson clover mulch treatment. Height of soybean in crimson clover, hairy vetch and P.E. mulch treatment was 6.9%, 20.2% and 22.0% higher than that of control. But height of soybean in rye mulch treatment was lower than control on $13^{th}$ July. At harvesting, yields of soybean were in order of hairy vetch mulch treatment${\fallingdotseq}$ P.E. mulch treatment > crimson clover mulch treatment ${\fallingdotseq}$ rye mulch treatment > control.

Studies on the Increase of Germination Percent of Angelica gigas Nakai I. Germination Characteristics and Cause of Lower Germination Percent (참당귀(當歸) 종자(種字)의 발아율(發芽率) 향상(向上)에 관(關)한 연구(硏究) I. 발아특성(發芽特性)과 발아율(發芽率) 저조(低調) 원인(原因))

  • Cho, Seon-Haeng;Kim, Ki-June
    • Korean Journal of Medicinal Crop Science
    • /
    • v.1 no.1
    • /
    • pp.3-9
    • /
    • 1993
  • This experiment was conducted to study germination characteristics and the decrease cause of germination percent in Angelica gigas Nakai seed. The emergence percent of winter sowing was higher than that of spring sowing as 66.6% and 41.1%, respectively, and the first emergence date was also earlier in winter sowing. The seed germination speed, percent and coefficent showed the highest value at $20^{\circ}C$ of incubation temperature, but lower value at $10^{\circ}C\;and\;30^{\circ}C$. The water uptake speed was increased along with increasing water temperature. The weight of imbibed seed at germination was 3.4times higher based on the weight of intact dry seed and 2.3times on removal of seed coat. In terms of length of seed was large, the germination percent was higher. The germination percent of brown colored seeds showed higher value than that of green colored seeds. The prolonged storage period decreased germination percent. When A.gigas seeds stored at room temperatue for 2years, the seeds were lost their viability. The biological inhibition effect of methanol, water and ether extract on the germination and growth of A.gigas and lettuce seed showed the highest value in the methanol extract, followed by water extract and the least in ether extract.

  • PDF

Evaluation of Soil and Fertilizer Management Techniques Applied by Farmers in Forcing and Semi-forcing Cucumber Cultivation Facilities (오이 촉성재배와 반촉성재배 농가들의 토양 및 시비관리기술 평가)

  • Lee, Ju-Young;Jang, Byoung-Choon;Sung, Jwa-Kyung;Lee, Su-Yeon;Kim, Rog-Young;Lee, Ye-Jin;Park, Yang-Ho;Kang, Sung-Soo;Hyun, Byung-Keun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.983-991
    • /
    • 2012
  • These days, agricultural products cultivated in facilities occupy the highest percentage of agricultural output price. Specifically cucumbers have been one of the crops that farmers prefer to growing, because their prices were high. However, cucumber crop is sensitive to the soil and environments and it requires the exact crop management. In order to establish cultivation techniques for cucumbers, the current situation of cucumber cultivation was surveyed from ten cucumber farmlands; five farmlands of cucumber cultivation in forcing and five of semi-forcing practicing systems, respectably. The soil conditions were alluvial or valley in soil topology, moderately or poorly drainage in soil drainage classes, coarse loamy in soil texture family. Soil was managed with deep plowing combined with application of basal fertilizers such as compost, rice straw, oil cake, wood chip and chemical fertilizer. The whole soil was prepared in uniformly with rotary. Three major nutrients ($N-P_2O_5-K_2O$)of basal application were 815-464-529 kg $ha^{-1}$ in forcing and 197-135-151 kg $ha^{-1}$ in semi-forcing cultivation. Top dressing of fertilizer was supplied in fertigation system of macro and micro elements in 2~3 day interval with water irrigation. The average yields of cucumbers were $168t\;ha^{-1}$ with 381,000 thousand won $ha^{-1}$ in average gross profit (AGP) in forcing cultivation and $115t\;ha^{-1}$ with 177,000 thousand won $ha^{-1}$ in AGP in semi-forcing cultivation. Cucumber production during the winter season was considered to increase the gross profit because cucumber price tends to stay in high level during this time. The accumulation of soil chemicals like EC, available $P_2O_5$ and exchangeable cations could be controlled by rice straw application. The rice straw application increased soil temperature during the winter season, in exchange of soil air, and in extension of plant roots. In addition, the rice straw application somewhat affected decrease of salts accumulation.

Growth Characteristics and Productivity of Spring Sowing Time and Mixed Sowing of Winter Annual Forage Crops (동계 사료작물 봄 파종 시기와 혼파에 따른 생육특성 및 수량 평가)

  • Nam, Cheol Hwan;Kim, Ki Soo;Park, Man Ho;Yun, An A;Park, Jong Ho;Han, Ouk Kyu;Kim, Won Ho;Sun, Sang Soo
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.39 no.4
    • /
    • pp.207-215
    • /
    • 2019
  • This study was conducted to establish spring sowing techniques in preparation for the impacts of climate change on sowing time and wintering rates of winter forage crops such as barley, oat and IRG. Oat showed the highest yield in 2017 which had relatively dry climate condition. And when sowing in late Febrnary 2017 yielding 9,408kg/ha were obtained, yielding 4,011kg/ha more than IRG's sown in the same period. In 2018 which had relatively wet climate condition, four barley species decreased in the production from the previous year. Oat also had decreased by 70% from 9,408kg/ha to 2,851kg/ha. On the other hand, IRG maintained the production in the mid-5,000kg/ha range. It was also found that IRG had the least variability due to external influences regardless of seeding period for 2 years. Mixed sowing with IRG and oat in 50:50 ratio was the highest dry matter, 6,584kg/ha, and IRG was 18.5% and Oat was 2.3 times higher than single planting.

Global Warming on Double Cropping in North Korea (지구온난화에 따른 북한의 두벌농사 특성 평가)

  • Kang, Yang-Soon;Lee, Jong-Hoon;Lee, Byong-Lyol
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.55 no.3
    • /
    • pp.214-219
    • /
    • 2010
  • In order to evaluate the benefits of global warming on the double cropping with staple crops in North-Korea, four aspects such as the increasing rate of air temperature, the wintering temperatures for winter crops, the causing temperature of cool injury to rice and the securing of accumulated temperature for the double cropping in the different agricultural climate zones were analyzed by comparing the differences between the past 22 years from 1973 to 1994 and the recent 5 years from 2002 to 2006. The warming rate in recent daily mean air temperature of $8.96^{\circ}C$ in North Korea was higher by $0.64^{\circ}C$ than that in the past with large regional variations ranging from $1.06^{\circ}C$ in Samjiyeon of northern inland semi-alpine zone to $12.26^{\circ}C$ in Jangjeon of east central coastal zone. With the accumulated temperatures of more than $3,150^{\circ}C$ and $2,650^{\circ}C$, it was possible to apply the double cropping patterns with winter wheat and for cropping patterns with spring potato, respectively, to the whole region except for the northern inland semi-alpine zone. However, the wintering temperature higher than $-15^{\circ}C$ of average daily minimum air temperature of January, cropping patterns were impossible to northern inland semi-alpine zone and most regions of the northern mountainous zone. The days passed by below $17^{\circ}C$ in daily mean air temperature, causing the spikelet sterility at meiotic stage of rice in July, were a lot recorded from 21 to 29 days in northern inland semi-alpine zone and from 2 to 10 days in east-northern coastal zone, respectively. Therefore, a reasonable utilization of heat / temperature resources would relieve the limiting factors in double cropping for stable production of staple crops in North-Korea.

Current Wheat Quality Criteria and Inspection Systems of Major Wheat Producing Countries (밀 품질평가 현황과 검사제도)

  • 이춘기;남중현;강문석;구본철;김재철;박광근;박문웅;김용호
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47
    • /
    • pp.63-94
    • /
    • 2002
  • On the purpose to suggest an advanced scheme in assessing the domestic wheat quality, this paper reviewed the inspection systems of wheat in major wheat producing countries as well as the quality criteria which are being used in wheat grading and classification. Most wheat producing countries are adopting both classifications of class and grade to provide an objective evaluation and an official certification to their wheat. There are two main purposes in the wheat classification. The first objectives of classification is to match the wheat with market requirements to maximize market opportunities and returns to growers. The second is to ensure that payments to glowers aye made on the basis of the quality and condition of the grain delivered. Wheat classes has been assigned based on the combination of cultivation area, seed-coat color, kernel and varietal characteristics that are distinctive. Most reputable wheat marketers also employ a similar approach, whereby varieties of a particular type are grouped together, designed by seed coat colour, grain hardness, physical dough properties, and sometimes more precise specification such as starch quality, all of which are genetically inherited characteristics. This classification in simplistic terms is the categorization of a wheat variety into a commercial type or style of wheat that is recognizable for its end use capabilities. All varieties registered in a class are required to have a similar end-use performance that the shipment be consistent in processing quality, cargo to cargo and year to year, Grain inspectors have historically determined wheat classes according to visual kernel characteristics associated with traditional wheat varieties. As well, any new wheat variety must not conflict with the visual distinguishability rule that is used to separate wheats of different classes. Some varieties may possess characteristics of two or more classes. Therefore, knowledge of distinct varietal characteristics is necessary in making class determinations. The grading system sets maximum tolerance levels for a range of characteristics that ensure functionality and freedom from deleterious factors. Tests for the grading of wheat include such factors as plumpness, soundness, cleanliness, purity of type and general condition. Plumpness is measured by test weight. Soundness is indicated by the absence or presence of musty, sour or commercially objectionable foreign odors and by the percentage of damaged kernels that ave present in the wheat. Cleanliness is measured by determining the presence of foreign material after dockage has been removed. Purity of class is measured by classification of wheats in the test sample and by limitation for admixtures of different classes of wheat. Moisture does not influence the numerical grade. However, it is determined on all shipments and reported on the official certificate. U.S. wheat is divided into eight classes based on color, kernel Hardness and varietal characteristics. The classes are Durum, Hard Red Spring, Hard Red Winter, Soft Red Winter, Hard White, soft White, Unclassed and Mixed. Among them, Hard Red Spring wheat, Durum wheat, and Soft White wheat are further divided into three subclasses, respectively. Each class or subclass is divided into five U.S. numerical grades and U.S. Sample grade. Special grades are provided to emphasize special qualities or conditions affecting the value of wheat and are added to and made a part of the grade designation. Canadian wheat is also divided into fourteen classes based on cultivation area, color, kernel hardness and varietal characteristics. The classes have 2-5 numerical grades, a feed grade and sample grades depending on class and grading tolerance. The Canadian grading system is based mainly on visual evaluation, and it works based on the kernel visual distinguishability concept. The Australian wheat is classified based on geographical and quality differentiation. The wheat grown in Australia is predominantly white grained. There are commonly up to 20 different segregations of wheat in a given season. Each variety grown is assigned a category and a growing areas. The state governments in Australia, in cooperation with the Australian Wheat Board(AWB), issue receival standards and dockage schedules annually that list grade specifications and tolerances for Australian wheat. AWB is managing "Golden Rewards" which is designed to provide pricing accuracy and market signals for Australia's grain growers. Continuous payment scales for protein content from 6 to 16% and screenings levels from 0 to 10% based on varietal classification are presented by the Golden Rewards, and the active payment scales and prices can change with market movements.movements.

Studies on Growth, Forage Yield, and Nutritive Value according to Different Seeding Dates of Barnyard Millet (파종기에 따른 사료용 피의 생육, 수량 및 사료가치에 관한 연구)

  • Lee, Jung-Joon;Kim, Jung-Gon;Sung, Byung-Ryul;Song, Tae-Hwa;Park, Tae-Sun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.33 no.4
    • /
    • pp.245-251
    • /
    • 2013
  • These experiments are being conducted to obtain data of plant height, panicle length, heading date, number of culm, and fresh and dry weight, crude protein, acid detergent fiber (ADF), neutral detergent fiber (NDF), total digestible nutrients (TDN) by six times seeding of 10 days interval ranging from May 1st to June 21st for two types of barnyard millet from the Suwon area in Korea. In the early-heading type, IT 170609 (Echinochloa crus-galli), the plant height and the number of culm per square meters are decreased by late seeding relatively, and heading date is 7 to 10 days earlier than the late seeding. And the dry weight of forage is rapidly decreased after the June 11th seeding. In the late-heading type, IT 195422 (Echinochloa frumentacea), the plant height and the number of culm per square meters are also decreased by late seeding relatively, and heading date is about 13 days earlier than late seeding. The dry weight of forage was rapidly decreased after the June 11th seeding. In both two types, the nutritive value of ADF, NDF, and TDN are not changed by late seeding, but crude protein is increased by late seeding. The TDN yields of late-heading type, IT 195400, show average amounts in the June 1st seeding, but the TDN yield of early-heading type, IT 170606, indicate safety amounts of dry weight to the March 21st seeding. And these data are available for cropping systems, cultivating barnyard millet in summer and cereals for forage in winter, to get high production of forage in Korea.

Estimation of freeze damage risk according to developmental stage of fruit flower buds in spring (봄철 과수 꽃눈 발육 수준에 따른 저온해 위험도 산정)

  • Kim, Jin-Hee;Kim, Dae-jun;Kim, Soo-ock;Yun, Eun-jeong;Ju, Okjung;Park, Jong Sun;Shin, Yong Soon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.1
    • /
    • pp.55-64
    • /
    • 2019
  • The flowering seasons can be advanced due to climate change that would cause an abnormally warm winter. Such warm winter would increase the frequency of crop damages resulted from sudden occurrences of low temperature before and after the vegetative growth stages, e.g., the period from germination to flowering. The degree and pattern of freezing damage would differ by the development stage of each individual fruit tree even in an orchard. A critical temperature, e.g., killing temperature, has been used to predict freeze damage by low-temperature conditions under the assumption that such damage would be associated with the development stage of a fruit flower bud. However, it would be challenging to apply the critical temperature to a region where spatial variation in temperature would be considerably high. In the present study, a phenological model was used to estimate major bud development stages, which would be useful for prediction of regional risks for the freeze damages. We also derived a linear function to calculate a probabilistic freeze risk in spring, which can quantitatively evaluate the risk level based solely on forecasted weather data. We calculated the dates of freeze damage occurrences and spatial risk distribution according to main production areas by applying the spring freeze risk function to apple, peach, and pear crops in 2018. It was predicted that the most extensive low-temperature associated freeze damage could have occurred on April 8. It was also found that the risk function was useful to identify the main production areas where the greatest damage to a given crop could occur. These results suggest that the freezing damage associated with the occurrence of low-temperature events could decrease providing early warning for growers to respond abnormal weather conditions for their farm.

Selection of Supplemental Light Source for Greenhouse Cultivation of Pepper during Low Radiation Period through Growth and Economic Analysis (생육 및 경제성 분석을 통한 약광기 고추의 온실재배를 위한 적정 보광 광원 선정)

  • Hwang, Hee Sung;Lee, Kwang Hui;Jeong, Hyeon Woo;Hwang, Seung Jae
    • Journal of Bio-Environment Control
    • /
    • v.31 no.3
    • /
    • pp.204-211
    • /
    • 2022
  • To produce a high quality crop, light is an essential environmental factor in greenhouse cultivation. In the winter season, solar radiation is weak than other season. Therefore, using supplemental light during a low radiation period can increase the crop growth and yield. This study was conducted to select the economical supplemental light source for greenhouse cultivation in pepper during the low radiation period. The green pepper (Capsicum annuum 'Super Cheongyang') was transplanted on 5 September 2019. Supplemental lighting treatment was conducted from 1 January 2020 to 31 March 2020. RB LED (red and blue LED, red:blue = 7:3), W LED (white LED, R:G:B = 5:3:2), and HPS (high-pressure sodium lamp) were used as the supplemental light source. Non-treatment was used as the control. The plant height, SPAD, and number of nodes of pepper plants have no significant differences by supplemental light sources. However, the number of ramifications plants was the greatest in RB LED light source. Moreover, supplemental lighting increased photosynthesis of the pepper plant, and especially, the RB LED had the highest photosynthesis rate during supplemental lighting period. Also, the yield of pepper increased in the supplemental lighting treatment than in the control, and the RB LED had the greatest yield than other light sources. The electricity consumption was the highest in W LED and the lowest in HPS light. Through the economic analysis, the RB LED had high economic efficiency. In conclusion, these results suggest that using RB LED for supplemental light source during low radiation in pepper greenhouse increase the yield and economic feasibility.

Benthic Marine Algae in the East Coast of Korea : Flora, Distribution and Community Structure (한국 동해 연안역의 저서 해조류 : 해조상, 분포 및 군집구조)

  • NAM Ki Wan;KIM Young Sik;KIM Young Hwan;SOHN Chul Hyun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.29 no.5
    • /
    • pp.727-743
    • /
    • 1996
  • To know the floristic composition, vortical distribution and community structure of marine benthic algae inhabiting in the intertidal and subtidal zones of Yongil Bay, east coast of Korea, the study has performed using the quadrat method along a transect line from July, 1995 to June, 1996. In this area, a total of 144 species including 2 new red algae to Korea was found: 5 blue-green, 18 green, 20 brown and 101 red algae. The representative species throughout the year were Ulva pertusa, Gelidium amansii and Symphyocladia latiuscula. Dominant species were Sargassum thunbergii in spring, U. pertusa in summer and autumn. In winter, Chondrus ocellatus and Monostroma grevillei occurred dominantly. The standing crop exhibited mean value as $185.8g/m^2$ dry weight. Maximum value was recorded in spring $(267.3g/m^2)$ and minimum was observed in winter $(93.7g/m^2)$. Shannon's species diversity (H') and evenness (J') as maximum value were recorded in spring, whereas minimum values were shown in winter. Vertical distribution, rerognized by cluster analysis based on relative coverage of the species, could be divided into two or three algal groups except spring. In general, green algae (M. grevillei, Capsosiphon fulvescens, U. pefusa, Enteromorpha compressa) and brown algae (Sargassum fulvellum, S. thunbergii) were represented in the upper and middle zone and red algae (G. amansii, C. ocellatus, S. latiuscula, Crateloupia okamurae, Pachymeniopsis eilliptica) in the lower zone. The algal community varied according to season and environmental conditions. Particularly, seasonal variation of vortical distribution seemed to be affected primarily by water temperature. Also seasonal tidal level and tolerance of algal species to desiccation appeared to be associated with it in this area.

  • PDF