• 제목/요약/키워드: winkler's foundation

검색결과 150건 처리시간 0.021초

The application of nonlocal elasticity to determine vibrational behavior of FG nanoplates

  • Fattahi, A.M.;Safaei, Babak;Moaddab, Elham
    • Steel and Composite Structures
    • /
    • 제32권2호
    • /
    • pp.281-292
    • /
    • 2019
  • Nonlocal elasticity and Reddy plant theory are used to study the vibration response of functionally graded (FG) nanoplates resting on two parameters elastic medium called Pasternak foundation. Nonlocal higher order theory accounts for the effects of both scale and the effect of transverse shear deformation, which becomes significant where stocky and short nanoplates are concerned. It is assumed that the properties of FG nanoplate follow a power law through the thickness. In addition, Poisson's ratio is assumed to be constant in this model. Both Winkler-type and Pasternak-type foundation models are employed to simulate the interaction of nanoplate with surrounding elastic medium. Using Hamilton's principle, size-dependent governing differential equations of motion and corresponding boundary conditions are derived. A differential quadrature approach is being utilized to discretize the model and obtain numerical solutions for various boundary conditions. The model is validated by comparing the results with other published results.

Nonlinear stability of non-axisymmetric functionally graded reinforced nano composite microplates

  • Loghman, Abbas;Arani, Ali Ghorbanpour;Barzoki, Ali Akbar Mosallaie
    • Computers and Concrete
    • /
    • 제19권6호
    • /
    • pp.677-687
    • /
    • 2017
  • The nonlinear buckling response of nano composite anti-symmetric functionally graded polymeric microplate reinforced by single-walled carbon nanotubes (SWCNTs) rested on orthotropic elastomeric foundation with temperature dependent properties is investigated. For the carbon-nanotube reinforced composite (CNTRC) microplate, a uniform distribution (UD) and four types of functionally graded (FG) distribution are considered. Based on orthotropic Mindlin plate theory, von Karman geometric nonlinearity and Hamilton's principle, the governing equations are derived. Generalized differential quadrature method (GDQM) is employed to calculate the non-linear buckling response of the plate. Effects of FG distribution type, elastomeric foundation, aspect ratio (thickness to width ratio), boundary condition, orientation of foundation orthotropy and temperature are considered. The results are validated. It is found that the critical buckling load without elastic medium is significantly lower than considering Winkler and Pasternak medium.

Prediction of the critical buckling load of SWCNT reinforced concrete cylindrical shell embedded in an elastic foundation

  • Timesli, Abdelaziz
    • Computers and Concrete
    • /
    • 제26권1호
    • /
    • pp.53-62
    • /
    • 2020
  • Concrete is the most widely used substance in construction industry, so it's been required to improve its quality using new technologies. Nowadays, nanotechnology offers new frontiers for improving construction materials. In this paper, we study the stability analysis of the Single Walled Carbon Nanotubes (SWCNT) reinforced concrete cylindrical shell embedded in elastic foundation using the Donnell cylindrical shell theory. In this regard, we propose a new explicit analytical formula of the critical buckling load which takes into account the distribution of SWCNT reinforcement through the thickness of the concrete shell using the U, X, O and V forms and the elastic foundation using Winkler and Pasternak models. The rule of mixture is used to calculate the effective properties of the reinforced concrete cylindrical shell. The influence of diverse parameters on the stability behavior of the reinforced concrete shell is also discussed.

Nonlocal thermal vibrations of embedded nanoplates in a viscoelastic medium

  • Zenkour, Ashraf M.
    • Structural Engineering and Mechanics
    • /
    • 제82권6호
    • /
    • pp.701-711
    • /
    • 2022
  • The nonlocal elasticity as well as Mindlin's first-order shear deformation plate theory are proposed to investigate thermal vibrational of a nanoplate placing on a three-factor foundation. The Winkler-Pasternak elastic foundation is connected with the viscous damping to obtain the present three-parameter viscoelastic model. Differential equations of motion are derived and resolved for simply-supported nanoplates to get their natural frequencies. The influences of the nonlocal index, viscous damping index, and temperature changes are investigated. A comparison example is dictated to validate the precision of present results. Effects of other factors such as aspect ratio, mode numbers, and foundation parameters are discussed carefully for the vibration problem. Additional thermal vibration results of nanoplates resting on the viscoelastic foundation are presented for comparisons with future investigations.

Static stability analysis of graphene origami-reinforced nanocomposite toroidal shells with various auxetic cores

  • Farzad Ebrahimi;Mohammadhossein Goudarzfallahi;Ali Alinia Ziazi
    • Advances in nano research
    • /
    • 제17권1호
    • /
    • pp.1-8
    • /
    • 2024
  • In this paper, stability analysis of sandwich toroidal shell segments (TSSs) with carbon nanotube (CNT)-reinforced face sheets featuring various types of auxetic cores, surrounded by elastic foundations under radial pressure is presented. Two distinct types of auxetic structures are considered for the core, including re-entrant auxetic structure and graphene origami (GOri)-enabled auxetic structure. The nonlinear stability equilibrium equations of the longitudinally shallow shells are formulated using the von Karman shell theory, in conjunction with Stein and McElman approximation while considering Winkler-Pasternak's elastic foundation to simulate the interaction between the shell and elastic foundation. The Galerkin method is employed to derive the nonlinear stability responses of the shells. The numerical investigations show the influences of various types of auxetic-core layers, CNT-reinforced face sheets, as well as elastic foundation on the stability of sandwich shells.

A novel shear and normal deformation theory for hygrothermal bending response of FGM sandwich plates on Pasternak elastic foundation

  • Abazid, Mohammad Alakel;Alotebi, Muneerah S.;Sobhy, Mohammed
    • Structural Engineering and Mechanics
    • /
    • 제67권3호
    • /
    • pp.219-232
    • /
    • 2018
  • This paper deals with the static bending of various types of FGM sandwich plates resting on two-parameter elastic foundations in hygrothermal environment. The elastic foundation is modeled as Pasternak's type, which can be either isotropic or orthotropic and as a special case, it converges to Winkler's foundation if the shear layer is neglected. The present FGM sandwich plate is assumed to be made of a fully ceramic core layer sandwiched by metal/ceramic FGM coats. The governing equations are derived from principle of virtual displacements based on a shear and normal deformations plate theory. The present theory takes into account both shear and normal strains effects, thus it predicts results more accurate than the shear deformation plate theories. The results obtained by the shear and normal deformation theory are compared with those available in the literature and also with those obtained by other shear deformation theories. It is concluded that the present results are slightly deviated from other results because the normal deformation effect is taken into account. Numerical results are presented to show the effects of the different parameters, such as side-to-thickness ratio, foundation parameters, aspect ratio, temperature, moisture, power law index and core thickness on the stresses and displacements of the FG sandwich plates.

Free vibration analysis of FG plates resting on the elastic foundation and based on the neutral surface concept using higher order shear deformation theory

  • Benferhat, Rabia;Daouadji, Tahar Hassaine;Mansour, Mohamed Said;Hadji, Lazreg
    • Earthquakes and Structures
    • /
    • 제10권5호
    • /
    • pp.1033-1048
    • /
    • 2016
  • An analytical solution based on the neutral surface concept is developed to study the free vibration behavior of simply supported functionally graded plate reposed on the elastic foundation by taking into account the effect of transverse shear deformations. No transversal shear correction factors are needed because a correct representation of the transversal shearing strain obtained by using a new refined shear deformation theory. The foundation is described by the Winkler-Pasternak model. The Young's modulus of the plate is assumed to vary continuously through the thickness according to a power law formulation, and the Poisson ratio is held constant. The equation of motion for FG rectangular plates resting on elastic foundation is obtained through Hamilton's principle. Numerical examples are provided to show the effect of foundation stiffness parameters presented for thick to thin plates and for various values of the gradient index, aspect and side to thickness ratio. It was found that the proposed theory predicts the fundamental frequencies very well with the ones available in literature.

Use of finite and infinite elements in static analysis of pavement

  • Patil, V.A.;Sawant, V.A.;Deb, Kousik
    • Interaction and multiscale mechanics
    • /
    • 제3권1호
    • /
    • pp.95-110
    • /
    • 2010
  • In recent years, study of the static response of pavements to moving vehicle and aircraft loads has received significant attention because of its relevance to the design of pavements and airport runways. The static response of beams resting on an elastic foundation and subjected to moving loads was studied by several researchers in the past. However, most of these studies were limited to steady-state analytical solutions for infinitely long beams resting on Winkler-type elastic foundations. Although the modelling of subgrade as a continuum is more accurate, such an approach can hardly be incorporated in analysis due to its complexity. In contrast, the two-parameter foundation model provides a better way for simulating the underlying soil medium and is conceptually more appealing than the one-parameter (Winkler) foundation model. The finite element method is one of the most suitable mathematical tools for analysing rigid pavements under moving loads. This paper presents an improved solution algorithm based on the finite element method for the static analysis of rigid pavements under moving vehicular or aircraft loads. The concrete pavement is discretized by finite and infinite beam elements, with the latter for modelling the infinity boundary conditions. The underlying soil medium is modelled by the Pasternak model allowing the shear interaction to exist between the spring elements. This can be accomplished by connecting the spring elements to a layer of incompressible vertical elements that can deform in transverse shear only. The deformations and forces maintaining equilibrium in the shear layer are considered by assuming the shear layer to be isotropic. A parametric study is conducted to investigate the effect of the position of moving loads on the response of pavement.

A new three-dimensional model for free vibration analysis of functionally graded nanoplates resting on an elastic foundation

  • Mahsa Najafi;Isa Ahmadi;Vladimir Sladek
    • Steel and Composite Structures
    • /
    • 제52권3호
    • /
    • pp.273-291
    • /
    • 2024
  • This paper presents a three-dimensional displacement-based formulation to investigate the free vibration of functionally graded nanoplates resting on a Winkler-Pasternak foundation based on the nonlocal elasticity theory. The material properties of the FG nanoplate are considered to vary continuously through the thickness of the nanoplate according to the power-law distribution model. A general three-dimensional displacement field is considered for the plate, which takes into account the out-of-plane strains of the plate as well as the in-plane strains. Unlike the shear deformation theories, in the present formulation, no predetermined form for the distribution of displacements and transverse strains is considered. The equations of motion for functionally graded nanoplate are derived based on Hamilton's principle. The solution is obtained for simply-supported nanoplate, and the predicted results for natural frequencies are compared with the predictions of shear deformation theories which are available in the literature. The predictions of the present theory are discussed in detail to investigate the effects of power-law index, length-to-thickness ratio, mode numbers and the elastic foundation on the dynamic behavior of the functionally graded nanoplate. The present study presents a three-dimensional solution that is able to determine more accurate results in predicting of the natural frequencies of flexural and thickness modes of nanoplates. The effects of parameters that play a key role in the analysis and mechanical design of functionally graded nanoplates are investigated.

GENERALIZED THERMO ELASTIC WAVES IN A CYLINDRICAL PANEL EMBEDDED ON ELASTIC MEDIUM

  • Ponnusamy, P.;Selvamani, R.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제17권1호
    • /
    • pp.1-15
    • /
    • 2013
  • In this paper the three dimensional wave propagation in a homogeneous isotropic thermo elastic cylindrical panel embedded in an elastic medium (Winkler model) is investigated in the context of the L-S (Lord-Shulman) theory of generalized thermo elasticity. The analysis is carried out by introducing three displacement functions so that the equations of motion are uncoupled and simplified. A Bessel function solution with complex arguments is then directly used for the case of complex Eigen values. This type of study is important for design of structures in atomic reactors, steam turbines, wave loading on submarine, the impact loading due to superfast train and jets and other devices operating at elevated temperature. In order to illustrate theoretical development, numerical solutions are obtained and presented graphically for a zinc material with the support of MATLAB.