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ABSTRACT: In this paper the three dimensional wave propagation in a homogeneous isotropic 

thermo elastic cylindrical panel embedded in an elastic medium (Winkler model) is investigated in 

the context of the L-S (Lord-Shulman) theory of generalized thermo elasticity. The analysis is 

carried out by introducing three displacement functions so that the equations of motion are 

uncoupled and simplified. A Bessel function solution with complex arguments is then directly used 

for the case of complex Eigen values .This type of study is important for design of structures in 

atomic reactors, steam turbines, wave loading on submarine, the impact loading due to superfast 

train and jets  and other devices operating at elevated temperature. In order to illustrate theoretical 

development, numerical solutions are obtained and presented graphically for a zinc material with 

the support of MATLAB.  

 

 

1. INTRODUCTION 

Cylindrical panel plays an important structural component in many engineering fields such as 

aerospace, civil, chemical, mechanical, naval and nuclear. The dynamical interaction between 

the cylindrical panel and solid foundation has great practical applications in modern 

engineering fields due to their static and dynamic behaviors will be affected by the 

surrounding media. Studies of propagation of elastic waves at an interface have long been of 

interest to researchers in the fields of geophysics, acoustics and nondestructive evaluation. 

Common to all these studies is the investigation of the degrees of interaction among the 

interfaces that manifest themselves in the forms of reflection and transmission agents and give 

rise to geometric dispersion. These interactions depend upon the mechanical properties, 

geometric arrangements, nature of the interfacial conditions and the loading conditions. 

 

The analysis of thermally induced wave propagation of cylindrical panel embedded in an 

elastic medium is common place in the design of structures, atomic reactors, steam turbines, 

wave loading on submarine, the impact loading due to superfast train and jets and other 

devices operating at elevated temperature. In the field of nondestructive evaluation, laser-
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generated waves have attracted great attention owing to their potential application to 

noncontact and nondestructive evaluation of sheet materials. Moreover, it is well recognized 

that the investigation of the thermal effects on elastic wave propagation supported by elastic 

foundation has bearing on many seismological application. This  study may be used in 

applications involving nondestructive testing (NDT), qualitative nondestructive evaluation 

(QNDE) of large diameter pipes and health monitoring of other ailing infrastructures in 

addition to check and verify the validity of FEM and BEM for such problems. 

 

The static analysis cannot predict the behavior of the material due to the thermal stresses 

changes very rapidly. Therefore in case of suddenly applied loading, thermal deformation and 

the role of inertia getting more important. This thermo elastic stress response being significant 

leads to the propagation of thermo elastic stress waves in solids. The theory of thermo 

elasticity is well established by Nowacki [1]. Lord and Shulman [2] and Green and Lindsay 

[3] modified the Fourier law and constitutive relations, so as to get hyperbolic equation for 

heat conduction by taking into account the time needed for acceleration of heat flow and 

relaxation of stresses. A special feature of the Green–Lindsay model is that it does not violate 

the classical Fourier's heat conduction law. Vibration of functionally graded multilayered 

orthotropic cylindrical panel under thermo mechanical load was analyzed by X.Wang et.al [4]. 

Hallam and Ollerton [5] investigated the thermal stresses and deflections that occurred in a 

composite cylinder due to a uniform rise in temperature, experimentally and theoretically and 

compared the obtained results by a special application of the frozen stress technique of photo 

elasticity. Noda [6] have studied the thermal-induced interfacial cracking of magneto electro 

elastic materials under uniform heat flow. Chen et al [7] analyzed the point temperature 

solution for a penney-shapped crack in an infinite transversely isotropic thermo-piezo-elastic 

medium subjected to a concentrated thermal load applied arbitrarily at the crack surface using 

the generalized potential theory. Banerjee and Pao [8] investigated the propagation of plane 

harmonic waves in infinitely extended anisotropic solids by taking into account the thermal 

relaxation time. Sharma [9] investigated the three dimensional vibration analysis of a 

transversely isotropic thermo elastic cylindrical panel. Free vibrations of thin cylindrical 

shells having finite lengths with freely supported and clamped edges was discussed by Yu 

et.al[10]. An interesting problem in engineering is the static and dynamic analysis of plates 

and shell supported on elastic foundations [11].For isotropic cylindrical shell buried at a depth 

below the free surface of the ground, Wong et al. [12] gave its dynamic response from the 

point of view of three-dimensional elastic theory. Paliwal et al. [13] presented an clear 

investigation on the coupled free vibrations of isotropic circular cylindrical shell on Winkler 

and Pasternak foundations by employing a membrane theory. Upadhyay and Mishra [14] dealt 

with the non-axisymmetric dynamic behavior of buried orthotropic cylindrical shells excited 

by a combination of P-, SV and SH-waves. On natural frequencies of a transversely isotropic 

Cylindrical panel on a kerr foundation was discussed by Chen et al [15]. 

  

 In this paper the three dimensional wave propagation in a homogeneous isotropic 
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generalized thermo elastic cylindrical panel embedded in a elastic medium (Winkler model) is 

investigated in the context L.S theory of thermo elasticity. The analysis is carried out by 

introducing three displacement functions so that the equations of motion are uncoupled and 

simplified. A Bessel function solution with
 
complex arguments is then directly used for the 

case of
 
complex Eigen values. In order to illustrate theoretical development, numerical 

solutions are obtained and presented graphically for a zinc material. 

 

2. THE GOVERNING EQUATIONS 

 

Consider a cylindrical panel embedded on elastic medium as shown in Fig.1 of length L 

having inner and outer radius a and b with thickness h. The angle subtended by the cylindrical 

panel, which is known as center angle, is denoted by α. The deformation of the cylindrical 

panel in the direction r, θ, and z are defined by u, v and w. The cylindrical panel is assumed to 

be homogenous, isotropic and linearly elastic with Young’s modulus E, poisson ratio ν   and 

density ρ in an undisturbed state. 

 

In cylindrical coordinate the three dimensional stress equation of motion, strain displacement 

relation and heat conduction in the absence of body force for a linearly elastic medium are 

 1 1

, , , ,rr r r rz z rr ttr r u            
          (1a) 

1 1

, , , , ,2r r rzz z z r ttr r v              
         (1b) 

1 1

, , , ,rz r z zz z r ttr r w          
          (1c) 

   

  

2
1 2

, , , , , 0 , 0 1 0 2

1

, , ,

rr r zz t tt k

r z

T r T r T T C T T T
t t

u r u v w

 



      



  
       

  

     
(1d)

 

 
 

Fig.1 Geometry of the problem 
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where   is the mass density, vc  is the specific heat capacity, /K c   is the diffusity, 

K is the thermal conductivity,  0T  is the reference temperature.  

 
1 2 ,( ) 2 ( )k trr rr zz rr Te e e e T          

        (2a)
 

1 2 ,( ) 2 ( )k trr zz Te e e e T            
       (2b)

 

1 2 ,( ) 2 ( )k tzz rr zz zz Te e e e T          
        (2c) 

ije  are the strain components,   is the thermal stress coefficients, T is the temperature, t is 

the time,   and    are Lame’ constants. 0  and 1  are the thermal relaxation times 

and the comma notation is used for spatial derivatives. Here the 
ij is the Kronecker delta 

function. In addition, 1k  for L.S theory and 2k   for G.L theory. The thermal relaxation 

times 0 and 1  satisfies the inequalities 0 1 0   for G.L theory only. The strain 
ije  are 

related to the displacements are given by
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    (4)                                                   

where , ,u v w  are displacements along radial, circumferential and axial directions 

respectively. , ,rr zz  
 
are the normal stress components and , ,r z zr    are the shear 

stress components, , ,rr zze e e are normal strain components and , ,r z zre e e  are shear strain 

components.
   Substituting the equations (2), (3) and (4) in equations (1), gives the following three 

displacement equations of motion 
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(5) 

 

To solve equation (5), we take the displacement potential as 

  
1

, ,ru
r

      
1

, ,v
r

       ,zw        (6)  

Using Eqs (6) in Eqs (5), we find that   T,,   satisfies the equations 

22 2 2
2
1 1 2 ,2 2 2

(( 2 ) ) ( ) ( )k tT T
z t z


         

  
       

          
(7a) 

                                                           
2 2

2 2

1 1 2 ,2 21
( ( 2 ) ) ( ) ( )k tT T

z t
          

 
        

         
(7b) 

2 2
2

1 2 2
( ) 0

z t






 
   

 
            (7c) 

2 2
2 21 0 2

1 12 2

( )
( )VC i T T iT

T
z K K z

     


 
     

 
         (7d) 

where 0 01 i   ,  1 2 11 ki    , 2 1 01 ki   
.
 

Equation (7c) in   gives a purely transverse wave, which is not affected by temperature. 

This wave is polarized in planes perpendicular to the z-axis. We assume that the disturbance is 

time harmonic through the factor e
i t

. 

 

 

3. SOLUTION TO THE PROBLEM 

 

The equation (7) is coupled partial differential equations of the three displacement 

components. To uncouple equation (7), we can write three displacement functions which 

satisfies the simply supported boundary conditions followed by Sharma [9] 

( , , , ) ( )sin( )cos( / ) i tr z t r m z n e        

( , , , ) ( )sin( )sin( / ) i tr z t r m z n e                          
(8) 

( , , , ) ( )sin( )sin( / ) i tr z t r m z n e        

( , , , ) ( , , , )sin( )sin( / ) i tT r z t T r z t m z n e       

Where m is the circumferential mode and n is the axial mode, ω is the angular frequency of 

the cylindrical panel motion. By introducing the dimensionless quantities 

' r
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After substituting equation (9) in (8), we obtain the following system of equations    
2 2

2 1( ) 0k               (9a) 

2

2 1 2 4( ) 0g g g T                (9b) 

2 2

2 3 2( ) (1 ) (2 ) 0
4

g g T                                (9c) 

2 2 2 22

2 2 3 1 2 1) 0( L Lt i T i ti                       (9d) 

where 
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(10) 

 

Equation (10), on simplification reduces to the following differential equation: 

 
6 4 2

2 2 2 0A B C                 (11) 

where, 
2 2
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2 2 2
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2 22

1 3 3 2 3 4 5( ) (2 )L Lg t i ig g g tC g         

 

The solution of equation (11) for the coupled theory of thermo elasticity 1 0( 0)    are 

obtained as

   



GENERALIZED THERMO ELASTIC WAVES IN A CYLINDRICAL PANEL               7 

 
 

3

1

( ) ( ( ) ( ))i i i i

i

r A J r BY r   


 
 

3

1

( ) ( ( ) ( ))i i i i i

i

r d A J r BY r   


 
         (12) 

3

1

( ) ( ( ) ( ))i i i i i

i

T r e A J r BY r  


 
 

Here,  
2

ir  are the non-zero roots of the algebraic equation 

     
6 4 2

0i i ir A r B r C       

The arbitrary constant id
 

and ie
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Eq. (9a) is a Bessel equations with its possible solutions are 

4
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1 1
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2
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                      (14) 

where 
2' 2

1 1k k 
 

and J and Y  are Bessel functions of the first and second kinds 

respectively while, I  and k are modified Bessel functions of first and second kinds 

respectively. , 1,2,3,4i iA B i    are the arbitrary constants. Generally 
2

1 0k  , so that the 

situation 
2

1 0k  is will not be discussed in the following. For convenience, we consider the 

case of 
2

1 0k   and the derivation for the case of 
2

1 0k  is similar.
 

The solution of equation (9a) is 

4 1 4 1( ) ( ) ( )r A J k r B Y k r   
                                     (15)

 

where 
2 22

1 (2 ) Lk t    . 
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4. BOUNDARY CONDITION AND FREQUENCY EQUATIONS 

 

In this section we shall derive the secular equation for the three dimensional vibrations 

cylindrical panel subjected to traction free boundary conditions at the upper and lower 

surfaces at ,r a b  

'
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' '
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rz Lt m z e
r


     

 
    

 

                              

where prime denotes the differentiation with respect to r , ( , , )i iu u R i r z  are three non 

– dimensional displacements and , ,r rzrr r rzrr              are three non-

dimensional stresses. For the purpose of comparison, we first consider the uncoupled free 

vibration of isotropic cylindrical panel. In this case both convex and concave surface of the 

panel are traction free  

    0, 0 ( , )
,rr r rz T r a b
r      

          (17) 

    
1 0ijE                       , 1,2.....8i j            (18) 
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 In which  
*

1 1 2t a R t    ,
*

2 1 2t b R t  
 
and 

*t b a R   is the thickness -to-

mean radius ratio of the panel. Obviously  2,4,6,8ijE j   can obtained by just replacing 

modified Bessel function of the first kind in  1,3,5,7ijE i 
 

with the ones of the second 

1

41 1 1 1 1 1 1 1 1[( / ) ( ) ( ) ( )]E e t J t J t     



10    P. PONNUSAMY AND R.SELVAMANI 

 

kind, respectively, while  5,6,7,8ijE i  can be obtained by just replacing 1t  
in 

 1,2,3,4ijE i   with 2t . 

Now we consider the coupled free vibration problem. Allowing for the effect of the 

surrounded elastic medium, which is treated as the Pasternak model  , the boundary 

conditions at the inner and outer surfaces r = a,b can consider as follows 

     0 ( )rr r rz r a               (19) 

      , 0 ( )rr r r rzKu G u r b        
        (20) 

where  2 2 2 2 21z r        , K is the foundation modulus and G is the shear modulus   

of the foundation. It is mentioned here that the elastic medium can be modeled as Winkler 

type by setting G=0 in equation (20).From Eq. (20), and the results obtained in the preceding 

section, we get the coupled free vibration frequency equation as follows:      

 

  

2 0ijE 
               

, 1, 2 . . . . . 8i j            (21)
 

 2 1 1,2,3,4,6,7,8; 1,2....8ij ij i jE E  
 

 

 

    

    

2 1
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2 1

52 52 1 2 2

2 1

53 53 2 2 2 2 1 2 2

2 1

54 54 2 2 2 2 1 2 2
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p t J t t J t

p t Y t t Y t

E E

E E

E E

E E





 

 

 

 

  

  





 

 

  

  
 

    

    

2 1

55 55 2 3 2 2 1 3 2

2 1

56 56 2 3 2 2 1 3 2

p t J t t J t

p t Y t t Y t

E E

E E

 

 

  

  





  

  
 

where 

  
 2 2 2

1 2 2Lp p p t n t  
 

1 2where p KR and p G R  
. 

 

 

5. NUMERICAL RESULTS AND DISCUSSION 

 

The coupled free wave propagation in a simply supported homogenous isotropic thermo 

elastic  cylindrical panel embedded in a Winkler type of  elastic medium  is numerically 

solved for Zinc material by setting 2 0p  and Winkler elastic modulus 
71.5 10K   .For 

the purpose of numerical computation we consider the closed circular cylindrical shell with 
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the center angle 2   and the integer n must be even since the shell vibrates in 

circumferential full wave. The frequency equation for a closed cylindrical shell can be 

obtained by setting  1,2,3.....l l   where l is the circumferential wave number in 

equations (18). The material properties of a Zinc is  
3 37.14 10 kgm  

  0 296T K
 

2 1 11.24 10 degK Wm    

11 20.508 10 Nm  
  

6 2 15.75 10 degNm            

  1 0.0221 
   

1 1 20 . 3 8 5 1 0Nm    and 
2 1 13.9 10 degC J kg

    

 

The roots of the algebraic equation (11) were calculated using a combination of Birge-Vita 

method and Newton-Raphson method. In the present case simple Birge-Vita method does not 

work for finding the root of the algebraic equation. After obtaining the roots of the algebraic 

equation using Birge-Vita method, the roots are corrected for the desired accuracy using the 

Newton-Raphson method. This combination has overcome the difficulties in finding the roots 

of the algebraic equations of the governing equations. Here the values of the thermal 

relaxation times are taken [10] as 13

0 0.75 10 sect    
and 

13

1 0.5 10 sect   .Because the 

roots of the algebraic equation [11] are complex for all values of wave number, therefore the 

waves are attenuated in space. We can write
1 1 1c v i q    , so that  k R iq  ,where 

R v  and the wave speed ( v ) and the attenuation coefficient ( q ) are real numbers. 

 

 

Table 1. Comparison of non-dimensional frequencies between the Lord-Schulman Theory (L

-S) and Classical Theory (CT) of thermo-elasticity for symmetric and anti symmetric modes 

of thermally insulated cylindrical panel for 1 0.005p   

  

 

A comparison is made for the the symmetric and anti symmetric modes non-dimensional 

frequencies among the Lord-Schulman Theory (L - S) and Classical Theory (CT) 

for 1 0.005,0.05p   of t he  thermally insulated cylindrical panel in Tabl e s  1 and 2, 

respectively. From these tables, it is clear that as the sequential number of the wave number 

increases, the non dimensional frequencies also increases for both the symmetric  and anti 

 

Wave 

number  

  

Anti symmetric mode 

  

Symmetric mode 

 

     

LS 

        

CT 

     

LS 

         

CT 

 

0.1  0.3335    0.0541  0.2255    0.1564  

0.2  0.5337    0.1174  0.5073    0.2444  

0.6  0.8292    0.1994  0.5941    0.3487  

1.2  1.1408    0.2964  0.6303    0.6584  

1.8  1.4579    0.4051  0.7070    0.7551  

2.4  1.7707    0.6478  1.2007    0.9038  
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symmetric modes. Also, it is clear that the non dimensional frequency exhibits higher 

amplitudes for the LS theory compared with the CT for both 1 0.005p  and 1 0.05p  due 

to the combined effect of thermal relaxation times and damping of the foundation. 

 

 

Table 2. Comparison of non-dimensional frequencies between the Lord-Schulman Theory (L-

S) and Classical Theory (CT) for symmetric and anti symmetric modes of thermally insulated 

cylindrical panel with wave number for 1 0.05p  . 

 

 

 

In Fig.2 the variation of attenuation coefficient with respect to circumferential wave number of 

cylindrical shell is discussed for CT and LS in first mode. The magnitude of the attenuation 

coefficient increases monotonically to attain maximum value in 0.4 0.8   for both CT 

and LS and slashes down to became asymptotically linear in the remaining range of 

circumferential wave number. The variation of attenuation coefficient with respect to 

circumferential wave number of cylindrical shell is discussed for second mode in Fig.3, here 

the attenuation coefficient attain maximum value in 0 0.4  for both CT and LS theories 

and slashes down to become linear due relaxation times. From Fig.2 and Fig.3 it is clear that  

the attenuation profiles exhibits high amplitude for LS theory compared with CT due to the 

combine effect of thermal relaxation times and damping effect of foundation. 

Fig.4 reveals that the variation of non dimensional frequency with the foundation parameter 

1p  for first and second mode without thermal effect. By comparing with the classical thin 

shell theory from Yu [10], it is clear that the exact one agree well with the classical thin shell 

theory (CTST) for the first and second mode. This is identical to the well-known property of 

CTST for the uncoupled problem. However, for the thinner panel, when the effect of the 

foundation is obvious, the frequency of CTST will become smaller than the exact one. From 

the comparison of the dispersion curves in Fig.4 it is quite clear that due to the damping effect 

of the foundation on outer  sides of the panel the non dimensional frequency vary 

 

Wave 

number 

  

Anti symmetric mode 

  

Symmetric mode 

 

   LS      CT    LS 

 

       CT  

0.1  0.4781    0.0532  0.3084    0.2259  

0.2 

0.6 

1.2 

1.8 

2.4 

 0.5747 

0.8492 

1.5391 

1.7853 

1.9288 

   

 

0.1801 

0.2063 

0.3967 

0.5010 

0.7400 

 0.5130 

0.6220 

0.7295 

0.7752 

1.6349 

   0.2702 

0.3950 

0.6837 

0.8129 

0.9727 
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significantly and become steady for 1 0.5p  . The dispersion curves become more smoothen 

in this case than those in the absence of foundation parameter because of the shock absorption 

nature of foundation. 

 

 
 

Fig.2. Variation of attenuation coefficient of cylindrical shell with wave number on elastic 

foundation  7

20.3, 1, 1.5 10 , 0n K p     
 

 

 
 

Fig.3. Variation of attenuation coefficient of cylindrical shell with wave number on elastic 

foundation  7

20.3, 2, 1.5 10 , 0n K p     
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Fig.4. Variation of the foundation parameter p1 versus Non-dimensional frequency 

 20.3, 0.4, 0mR L p    . 

 

 

6. CONCLUSION 

 

The three dimensional wave propagation of a homogeneous isotropic generalized thermo 

elastic cylindrical panel embedded on the Winkler type of elastic foundation has been 

considered for this paper. For this problem, the governing equations of three dimensional 

linear theory of generalized thermo elasticity have been employed in the context of Lord 

Shulman theory and solved by Bessel function with complex argument. The effect of the 

attenuation coefficient against wave number and the foundation parameter 1p  on the natural 

frequencies of a closed Zinc cylindrical shell is investigated and the results are presented as 

dispersion curves. The table values show the impact of foundation on the cylindrical panel. 
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