• Title/Summary/Keyword: wing-type

Search Result 276, Processing Time 0.026 seconds

Flutter Characteristics of a Morphing Flight Vehicle with Varying Inboard and Outboard Folding Angles

  • Shrestha, Pratik;Jeong, Min-Soo;Lee, In;Bae, Jae-Sung;Koo, Kyo-Nam
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.2
    • /
    • pp.133-139
    • /
    • 2013
  • Morphing aircraft capable of varying their wing form can operate efficiently at various flight conditions. However, radical morphing of the aircraft leads to increased structural complexities, resulting in occurrence of dynamic instabilities such as flutter, which can lead to catastrophic events. Therefore, it is of utmost importance to investigate and understand the changes in flutter characteristics of morphing wings, to ensure uncompromised safety and maximum reliability. In this paper, a study on the flutter characteristics of the folding wing type morphing concept is conducted, to examine the effect of changes in folding angles on the flutter speed and flutter frequency. The subsonic aerodynamic theory Doublet Lattice Method (DLM) and p-k method are used, to perform the flutter analysis in MSC.NASTRAN. The present baseline flutter characteristics correspond well with the results from previous study. Furthermore, enhancement of the flutter characteristics of an aluminum folding wing is proposed, by varying the outboard wing folding angle independently of the inboard wing folding angle. It is clearly found that the flutter characteristics are strongly influenced by changes in the inboard/outboard folding angles, and significant improvement in the flutter characteristics of a folding wing can be achieved, by varying its outboard wing folding angle.

Steady-State/Transient Performance Simulation of the Propulsion System for the Canard Rotor Wing UAV during Flight Mode Transition

  • Kong, Changduk;Kang, Myoungcheol;Ki, Jayoung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.513-520
    • /
    • 2004
  • A steady-state/transient performance simulation model was newly developed for the propulsion system of the CRW (Canard Rotor Wing) type UAV (Unmanned Aerial Vehicle) during flight mode transition. The CRW type UAV has a new concept RPV (Remotely Piloted Vehicle) which can fly at two flight modes such as the take-off/landing and low speed forward flight mode using the rotary wing driven by engine bypass exhaust gas and the high speed forward flight mode using the stopped wing and main engine thrust. The propulsion system of the CRW type UAV consists of the main engine system and the duct system. The flight vehicle may generally select a proper type and specific engine with acceptable thrust level to meet the flight mission in the propulsion system design phase. In this study, a turbojet engine with one spool was selected by decision of the vehicle system designer, and the duct system is composed of main duct, rotor duct, master valve, rotor tip-jet nozzles, and variable area main nozzle. In order to establish the safe flight mode transition region of the propulsion system, steady-state and transient performance simulation should be needed. Using this simulation model, the optimal fuel flow schedules were obtained to keep the proper surge margin and the turbine inlet temperature limitation through steady-state and transient performance estimation. Furthermore, these analysis results will be used to the control optimization of the propulsion system, later. In the transient performance model, ICV (Inter-Component Volume) model was used. The performance analysis using the developed models was performed at various flight conditions and fuel flow schedules, and these results could set the safe flight mode transition region to satisfy the turbine inlet temperature overshoot limitation as well as the compressor surge margin. Because the engine performance simulation results without the duct system were well agreed with the engine manufacturer's data and the analysis results using a commercial program, it was confirmed that the validity of the proposed performance model was verified. However, the propulsion system performance model including the duct system will be compared with experimental measuring data, later.

  • PDF

The study on safety measures and the trend of helicopter accidents (헬리콥터의 사고 추세와 안전대책에 관한 연구)

  • Kim, C.Y.;Choi, Y.C.
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.12 no.2
    • /
    • pp.59-70
    • /
    • 2004
  • Most of studies on aircraft accidents have been conducted mainly for fixed-wing aircraft, while the studies on helicopter accidents have been done less even though the helicopter accidents occurred quite more than those of the fixed-wing. There are lots of differences between helicopter and fixed-wing accidents, in aspect of causes and occurrence of accidents as well as aerodynamics and operation. In Korea, helicopter accidents have occurred 2 or 3 times annually since 2000, while the number of fixed-wing aircraft accidents has been reduced considerably. The goal of this study is to solve the present safety problems in helicopter accidents by reviewing the characteristics of past accidents and comparing differences between two types of aircraft.

  • PDF

Downward Load Prediction and Reduction Strategy for QTP UAV

  • Park, Youngmin;Choi, Jaehoon;Lee, Hakmin;Kim, Cheolwan
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.2
    • /
    • pp.10-15
    • /
    • 2021
  • The propeller wake of tiltrotor-type aircrafts, such as TR-60 and quad tilt propeller (QTP) UAV, in hover substantially impinges the upper surface of the primary wing and generates a downward load. This load is directly proportional to the thrust of the propeller and reduces the available payload. Therefore, wing and nacelle mechanisms should be carefully designed to reduce downward load. This study conducted a numerical analysis of the rotating propeller in hover to predict the downward load of a QTP UAV. An unsteady three-dimensional Navier-Stokes solver was used along with a sliding mesh for the simulation of the rotating propeller. To reduce the downward load, the tilting mechanisms of the partial wing and nacelle were simultaneously introduced and numerically analyzed. Finally, the downward load was predicted by 14% of isolated propeller thrust; further, the downward load could be reduced by adopting the partial wing and nacelle tilting concept.

Local Heat Transfer Characteristics on Fin Surface of Plate Fin-Oval Tube with Delta Wing Vortex Generators (Plate Fin-Oval Tube 열교환기에서 익형 와류발생체에 의한 Fin 표면에서의 국소 열전달에 대한 특성)

  • Shin, Seok-Won;Chung, In-Kee;Kim, Soo-Youn
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.10
    • /
    • pp.757-766
    • /
    • 2009
  • In the present study, the effect of delta-wing vortex generators(DWVG) on the local heat transfer of the plate fin-oval tube was experimentally analyzed for Reynolds numbers for 2000, 2500 and 3200. The local heat transfer coefficient of the fin surface for four type DWVGs was measured by the naphthalene sublimation technique. As the results, the distribution of the heat transfer coefficient at rear of DWVGs showed longitudinal contours for common flow down DWVGs and wavy contours for common flow up DWVGs. The distribution showed many cell type contours at near wall and downstream for all DWVGs. Compared to case without DWVGs in present experimental tests, all DWVGs showed the best enhancement of heat transfer at Re=2000. Of 4 cases of DWVGs, D type showed the best enhancement of heat transfer.

Use of Wing Feather Loss to Examine Age-Related Molt in Oriental Storks (Ciconia boyciana)

  • Yoon, Jongmin;Yoon, Hyun-Ju;Nam, Hyungkyu;Choi, Seung-Hye
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.2 no.1
    • /
    • pp.26-31
    • /
    • 2021
  • Reproduction and molt are costly processes in avian life histories. These two fitness-related traits are expected to be under one of physiological trade-offs. Age-related molt is known to be higher in young birds than that in adults presumably due to the cost of reproduction in adults. The present study partially replicated a previous study using a non-invasive method of seasonal wing feather loss instead of capture-inspection for molting progress in oriental storks (Ciconia boyciana). We first examined characteristics of the known six wing feather types (i.e., primaries [P], primary coverts [PC], secondaries [S], secondary coverts [SC], and tertials [T]) from two specimens with four wings. Results were utilized as references for further investigation. We then collected a total of 3,807 wing feathers shedded by 61 captive storks for one year and classified them into six wing feather types based on the reference with structures of vane (i.e., how asymmetrical) and calamus (i.e., how rigidly attached to skin) of wing feathers. Our results indicated that annual losses of all six-type wing feathers decreased with increasing ages, ranging from 29% to 58% for PC, alula, SC, P, S, and T in order. Our results were also comparable to those of a former study, suggesting that the pattern of age-specific molt might be associated with the cost of reproduction in adults. However, juveniles might shed more wing feathers with low quality formed during the previous development stage than older birds.

A comparative study on the ultrastructurs of the imaginal wing discs of the wild type and the mutant vestigial of Drosophila melanogaster (노랑초파리의 야생형과 흔적날개 돌연변이체의 날개 성체원기 발달에 관한 전자현미경적 연구)

  • 이하규;이정주
    • The Korean Journal of Zoology
    • /
    • v.26 no.1
    • /
    • pp.29-40
    • /
    • 1983
  • The differences in the electron microscopic fine structures of the wing imaginal discs of the vestigial (vg), wing mutant and wild type of Drosophila melanogaster were investigated. The materials used in this study were collected at ten hours intervals from the late third instar larvae of the both stocks. The fine structural changes during differentiation were as follows: 1. In wild type lipid droplets were coalesced and converted to glycogen, while no changes were observed in the mutatn vestigial. 2. Degeneration of the cells by phagocytosis were observed not only from the mutatn vestigial, but from the wild type. However, degenerative feature of the wild type was poor. 3. Dented structures of tracheole showed little differences between wild type and the mutant vestigial. But the tracheole diameter of the wild type became wider in the course of differentiation, while the mutant vestigial narrow. Although mutant vestigial develops normally during early embryogenesis, the late third instar larvae shows defficiency in gluconeogenesis, converting fatty acid to glycogen. This, together with the predominant cell degeneration by phagocytosis and poorly developed tracheole, seems to effect on the expression of the vestigial phenotype.

  • PDF

Aerodynamic Characteristics of an Insect-type Flapping Wings (곤충 모방 플래핑 날개의 공력 특성)

  • Han, Jong-Seob;Chang, Jo-Won;Choi, Hae-Cheon;Kang, In-Mo;Kim, Sun-Tae
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.311-314
    • /
    • 2007
  • Aerodynamic characteristics of an insect-type flapping wings were carried out to obtain the design parameters of Micro Hovering Air Vehicle. A pair of wing model was scaled up about 200 times and applied two pairs of 4-bar linkage mechanism to mimic the wing motion of a fruit fly(Drosophila). To verify the Weis-Fogh mechanism, a pair of wings revolved on the 'Delayed Rotation'. Lift and drag were measured in conditions of the Reynolds number based on wing tip velocity of about 1,200 and the maximum angle of attack of 40$40^{\circ}$. Inertia forces of a wing model were also measured by using a 99.98% vacuum chamber and subtracted on measured data in air. In the present study, high lift effect of Weis-Fogh mechanism was appeared in the middle of upstroke motion.

  • PDF

Calculation of Hydrodynamic Characteristics of Weis-Fogh Type Water Turbine Using the Advanced Vortex Method (개선 와법을 이용한 Weis-Fogh형 수차의 유체역학적 특성계산)

  • Ro, Ki Deok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.3
    • /
    • pp.203-210
    • /
    • 2014
  • In this study, the hydrodynamic characteristics of Weis-Fogh type water turbine were calculated by the advanced vortex method. The wing (NACA0010 airfoil) and both channel walls were approximated by source and vortex panels, and free vortices are introduced away from the body surfaces. The distance from the trailing edge of the wing to the wing axis, the width of the water channel and the maximum opening angle were selected as the calculation parameters, the important design factors. The maximum efficiency and the power coefficient for one wing of this water turbine were 26% and 0.4 at velocity ratio U/V=2.0 respectively. The flow field of this water turbine is very complex because the wing moves unsteadily in the channel. However, using the advanced vortex method, it could be calculated accurately.

Flying-wing Type Compound Drone Design and Mission Accuracy Analysis (전익기형 복합드론의 설계 및 임무 정확도 연구)

  • Sung, Dong-gyu;Koh, Eun-hak;Kim, Ju-chan;Nam, Yong-hyeon;Lee, Jeong-ho;Lee, Jae-seung;Lee, Chan-bin;Jeon, Yeong-bae;Choi, Cheol-kyun;Lee, Jae woo
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.26 no.4
    • /
    • pp.122-128
    • /
    • 2018
  • A compound drone that combines a fixed wing and a rotary wing is an aircraft that can take off and landing vertically, and can increase flight time and fly faster with fixed wings. The compound drones are divided into many types depending on the method of adding the thrust vectoring or the lift fan and the position of the rotor. In this study, we designed and fabricated a composite drone with four V-TOL motors in a fixed-wing, and assigned missions to the aviation body, hence judged mission accuracy using the actual flight test. The design process and the mission evaluation process employed in this study can be utilized on the development of various unmanned aerial vehicle.