• 제목/요약/키워드: wing-type

검색결과 277건 처리시간 0.029초

리더가 없는 방식의 다수 무인기 편대비행 제어와 안정성 해석 (Leaderless Formation Control Strategy and Stability Analysis for Multiple UAVs)

  • 서중보;안채익;김유단
    • 한국항공우주학회지
    • /
    • 제36권10호
    • /
    • pp.988-995
    • /
    • 2008
  • 본 논문에서는 궤환선형화를 이용한 일치기법을 사용하여 다수 무인기의 편대비행 제어기를 설계하였다. 제안한 기법은 한 대의 리더기를 중심으로 하는 집중형 방식이 아닌 분산형 방식으로, 각 개체의 제어입력은 인접한 개체만의 정보만을 이용하여 설계된다. 라플라시안 행렬을 이용하여 개체 간의 정보 교류를 정의한 후, 궤환선형화 과정을 거친 비행체에 적용하였다. 또한, 본 논문에서 제안한 제어기의 안정성 해석을 수행하였다. 또한 제안한 제어기의 성능을 검증하기 위해서 회전익 무인기 비행체 모델에 대한 수치 시뮬레이션을 수행하였다.

Toward a More Complete Analysis for Fluid-Structure Interaction in Helicopters

  • Kim, Kyung-Hwan;Shin, Sang-Joon;Lee, Jae-Won;Yee, Kwan-Jung;Oh, Se-Jong
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제7권2호
    • /
    • pp.110-120
    • /
    • 2006
  • There have been developed many structural and fluid rotorcraft analysis models in rotorcraft community, and also lots of investigations have been conducted to combine these two models. These investigations turn out to be good at predicting the airloads precisely, but they have not taken the blade nonlinear deflection into account. For this reason, the present paper adopts a sophisticated structural model which can describe three-dimensional nonlinear deflection of the blade. And it is combined with two types of aerodynamic model. First one is generalized Greenberg type of finite-time aerodynamic model, which is originally established for a fixed wing, but later modified to be suitable for coupled flap-lag-torsional aeroelastic analysis of the rotor blade. Second aerodynamic model is based on the unsteady source-doublet panel method coupled with a free wake model. The advantages of the present method are capabilities to consider thickness of the blade and more precise wake effects. Transient responses of the airloads and structural deflections in time domain are mainly analyzed in this paper.

Conceptual Design of a Multi-Rotor Unmanned Aerial Vehicle based on an Axiomatic Design

  • Yoo, Dong-Wan;Won, Dae-Yeon;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제11권2호
    • /
    • pp.126-130
    • /
    • 2010
  • This paper presents the conceptual design of a multi-rotor unmanned aerial vehicle (UAV) based on an axiomatic design. In most aerial vehicle design approaches, design configurations are affected by past and current design tendencies as well as an engineer's preferences. In order to design a systematic design framework and provide fruitful design configurations for a new type of rotorcraft, the axiomatic design theory is applied to the conceptual design process. Axiomatic design is a design methodology of a system that uses two design axioms by applying matrix methods to systematically analyze the transformation of customer needs into functional requirements (FRs), design parameters (DPs), and process variables. This paper deals with two conceptual rotary wing UAV designs, and the evaluations of tri-rotor and quad-rotor UAVs with proposed axiomatic approach. In this design methodology, design configurations are mainly affected by the selection of FRs, constraints, and DPs.

Development of smart transducer with embedded sensor for automatic process control of ultrasonic wire bonding

  • Or, Siu Wing;Chan, Helen Lai Wa;Liu, Peter Chou Kee
    • Smart Structures and Systems
    • /
    • 제1권1호
    • /
    • pp.47-61
    • /
    • 2005
  • A ring-shaped lead zirconate titanate (PZT) piezoceramic sensor has been integrated with the Langevin-type piezoceramic driver of an ultrasonic wire-bonding transducer to form a smart transducer for in-situ measurement of three essential bonding parameters: namely, impact force, ultrasonic amplitude and bond time. This sensor has an inner diameter, an outer diameter and a thickness of 12.7 mm, 5.1 mm and 0.6 mm, respectively. It has a specifically designed electrode pattern on the two major surfaces perpendicular to its thickness along which polarization is induced. The process-test results have indicated that the sensor not only is sensitive to excessive impact forces exerted on the devices to be bonded but also can track changes in the ultrasonic amplitude proficiently during bonding. Good correlation between the sensor outputs and the bond quality has been established. This smart transducer has good potential to be used in automatic process-control systems for ultrasonic wire bonding.

비행시험을 통한 경비행기의 속도계 보정 (Airspeed Calibration of a Light Airplane via Flight Test)

  • 이정훈;류시융;이장호
    • 제어로봇시스템학회논문지
    • /
    • 제14권7호
    • /
    • pp.629-634
    • /
    • 2008
  • This paper presents the flight test procedure and the results for the airspeed indicator calibration of a light airplane the name of ChangGong-91, which is the first type certified aircraft from Korean Ministry of Construction and Transportation, as a part of the flight test validation to get the certification. The flight tests for airspeed position error calibrations are conducted using tower fly by method in order to calibrate swivel head testboom which is attached to the right wing tip of the airplane. Also system to system method is applied in order to calibrate the airspeed indicator of the cockpit. The flight test is conducted at the basis of the 'Korean Airworthiness Standard' which is the regulation of Korean Ministry of Construction and Transportation. The airspeed error range for the testboom and the airspeed indicator are determined to $-0.75{\sim}+0.75$ knot and to $-4.0{\sim}+2.0$ knots, respectively. The calibration results are applied to ChangGong-91 Flight Operation Manual.

비압축성 유동장내 2차원 익형의 혼돈거동 (Chaotic Behavior of 2-Dimensional Airfoil in Incompressible Flow)

  • 정성원;이동기;이상환
    • 대한기계학회논문집
    • /
    • 제19권2호
    • /
    • pp.495-508
    • /
    • 1995
  • The self-excited vibrations of airfoil is related to the classical flutter problems, and it has been studied as a system with linear stiffness and small damping. However, since the actual aircraft wing and the many mechanical elements of airfoil type have various design variables and parameters, some of these could have strong nonlinearities, and the nonlinearities could be unexpectedly strong as the parameters vary. This abrupt chaotic behavior undergoes ordered routes, and the behaviors after these routes are uncontrollable and unexpectable since it is extremely sensitive to initial conditions. In order to study the chaotic behavior of the system, three parameters are considered, i.e., free-stream velocity, elastic distance and zero-lift angle. If the chaotic parameter region can be identified from the mathematically modeled nonlinear differential equation system, the designs which avoid chaotic regions could be suggested. In this study, by using recently developed dynamically system methods, and chaotic regions on the parameter plane will be found and the safe design variables will be suggested.

날개-평판 접합부에서의 날개 앞전 판 최적화를 통한 유동특성 향상 (Improvement of the flow around airfoil/flat-plate junctures by optimization of the leading-edge fence)

  • 조종재;김귀순
    • 한국항공우주학회지
    • /
    • 제37권9호
    • /
    • pp.829-836
    • /
    • 2009
  • 말굽와류로 대표되는 3차원 유동현상은 필연적으로 주유동에 대한 2차 유동의 형태로 발생되며, 유동손실을 유발하게 된다. 본 논문에서는 2차유동 손실을 일으키는 주요 요인중의 하나인 말굽와류의 강도를 감쇄시키기 위해 일반적인 날개 앞전에 설치한 판에 대해, 판의 설치 높이, 길이, 폭 및 두께 등의 형상변수를 설계변수로 정하여 이를 최적화하였다. 근사최적설계 기법을 이용 최적화를 수행하였으며, $FLUENT^{TM}$$iSIGHT^{TM}$를 이용하였다. 최적화 수행결과, 기준 모델의 경우보다 전압력 계수가 약 7.5% 감소하였다.

A study of the round Variation Design Brassiere Pattern

  • Park, You-Shin;Choi, Yeong-Soon
    • 패션비즈니스
    • /
    • 제12권6호
    • /
    • pp.81-92
    • /
    • 2008
  • The purpose of this study is to develop the applied brassiere pattern of women which are fitting for 75A. The constructing of this experimental brassiere were lower cup, upper cup, front panel and U-wing as well as a full cup embcing the entire breasts. Basing on the bra model from domestic experiment results, development of an applied design, round side type pattern, has been suggested. Thus, suggesting the round variation design bra, which is an applied design based on the basic model based on the breast volume. Based on the sizes that are in reference to Size Korea (2004) and related previous researches, the basic model that has been experimented with 11.4% polyurethane and 88.6% Nylon as the materials, has been selected as the model of research. This takes 75A, the size of which is set according to the underbust circumference and the breasts circumference, as the basic model. It is an application in terms of design, and there is no change to the cup volume or size because it has been moved only from the cutting line. The applied design changes the right side of the lower cup into an easily-movable form and attaches it to the upper cup, and the lower cup takes the right part of the upper cup to form a cup shape of round variation design. It also changes basic straight form of the wings, and alters them into U-shape.

SB발파에서 파단면 제어의 고도화에 관한 연구 (Study on the Precise Controlling of Fracture Plane in Smooth Blasting Method)

  • 조상호;정윤영;김광염;가네꼬 카츠히꼬
    • 터널과지하공간
    • /
    • 제19권4호
    • /
    • pp.366-372
    • /
    • 2009
  • 최근, 암반발파에서 평활한 파단면과 굴착손상영역을 제어하기 위한 목적으로 전자지발뇌관 및 노치장약공 등을 이용한 제어발파기술들이 개발되어 오고 있다. 본 연구에서는 날개형 노치 장약공을 이용한 SB발파에서 암반 내 파괴과정을 모사하여 파단면과 암반손상제어에 미치는 영향인자에 대하여 고찰하였다. 최종적으로 장약공 노치의 파단면 제어효과에 관한 수치해석적 고찰을 날개형 노치장약공과 전자뇌관을 이용한 새로운 SB발파법으로, ED-Notch SB발파법(Elerectronic Detonator Notched Charge Hole Smooth Blasting Method)을 제안하였다.

풍력발전기 톱니형 뒷전 블레이드 소음 예측 기법 (Prediction Method for Trailing-edge Serrated Wind Turbine Noise)

  • 한동연;최지훈;이수갑
    • 신재생에너지
    • /
    • 제16권2호
    • /
    • pp.1-13
    • /
    • 2020
  • The reduction of noise from wind turbines has been studied using various methods. Some examples include controlling wind turbine blades, designing low-noise-emitting wind turbine blades, and using trailing-edge serrations. Among these methods, serration is considered an effective noise reduction method. Various studies have aimed to understand the effects of trailing-edge serration parameters. Most studies, however, have focused on fixed-wing concepts, and few have analyzed noise reduction or developed a prediction method for rotor-type blades. Herein, a noise prediction method, composed of two noise prediction methods for a wind turbine with trailing-edge serrations, is proposed. From the flow information obtained by an in-house program (WINFAS), the noise from non-serrated blades is calculated by turbulent ingestion noise and airfoil self-noise prediction methods. The degree of noise reduction caused by the trailing-edge serrations is predicted in the frequency domain by Lyu's method. The amount of noise reduction is subtracted from the predicted result of the non-serrated blade and the total reduction of the noise from the rotor blades is calculated.