DOI QR코드

DOI QR Code

Improvement of the flow around airfoil/flat-plate junctures by optimization of the leading-edge fence

날개-평판 접합부에서의 날개 앞전 판 최적화를 통한 유동특성 향상

  • 조종재 (부산대학교 항공우주공학과 대학원) ;
  • 김귀순 (부산대학교 항공우주공학과)
  • Published : 2009.09.01

Abstract

3-Dimensional flow which is represented by horseshoe vortex is generated as a type of secondary flow about the main flow. As well, it causes the flow loss. The present study deals with the leading edge fence shape on a wing-body junction to decrease a horseshoe vortex, one of the main factors to generate the secondary flow losses. The shape of leading-edge fence was optimized with the design variables of the installed height, length, width, and thickness of the fence as the design variables. Approximate optimization design method is used as the optimization. The study was investigated using $FLUENT^{TM}$ and $iSIGHT^{TM}$. Total pressure coefficient of the optimized design case was decreased about 7.5 % compare to the baseline case.

말굽와류로 대표되는 3차원 유동현상은 필연적으로 주유동에 대한 2차 유동의 형태로 발생되며, 유동손실을 유발하게 된다. 본 논문에서는 2차유동 손실을 일으키는 주요 요인중의 하나인 말굽와류의 강도를 감쇄시키기 위해 일반적인 날개 앞전에 설치한 판에 대해, 판의 설치 높이, 길이, 폭 및 두께 등의 형상변수를 설계변수로 정하여 이를 최적화하였다. 근사최적설계 기법을 이용 최적화를 수행하였으며, $FLUENT^{TM}$$iSIGHT^{TM}$를 이용하였다. 최적화 수행결과, 기준 모델의 경우보다 전압력 계수가 약 7.5% 감소하였다.

Keywords

References

  1. Eckerle, W. A. and Langston, L. S., "Horseshoe Vortex Formation Around a Cyliner", Trans. ASME, Journal of Turbomachinery, Vol. 109, 1987, pp. 278~285. https://doi.org/10.1115/1.3262098
  2. Kubendran, L. R. and Harvey, W. D.Juncture Flow Control Using Leading-EdgeFillets, 1985, AIAA-85-4097.
  3. Devenport, W. J., Simpson, R.L., Dewitz,M.B and Agarwal, N.K. "Effects of aLeading-Edge Fillet on the Flow Past anAppendage-Body Junction", AIAA J., Vol. 30,No. 9, 1992, pp. 2177-2183. https://doi.org/10.2514/3.11201
  4. Zess, G. A. and Thole, K. A., "ComputationalDesign and Experimental Evaluationof Using a Leading Edge Fillet on a GasTurbine Vane", Journal of Turbomachinery, Vol.124, 2002, pp. 167-175. https://doi.org/10.1115/1.1460914
  5. 조종재, 김귀순, “일반적인 날개 형상에서의앞전 판에 의한 말굽와류 제어", 한국항공우주학회지, Vol. 37, No. 4, 2009, pp. 336-343. https://doi.org/10.5139/JKSAS.2009.37.4.336
  6. Olcmen, S. and Simpson, R., "An experimental study of a three-dimensional pressuredriven turbulent boundary layer", Journal of Fluid Mechanics, Vol. 290, 1995, pp. 225-262. https://doi.org/10.1017/S0022112095002497
  7. Olcmen, S. and Simpson, R., "Somefeatures of a turbulent wing-body junction vorticalflow", 35th Aerospace Sciences Meetingand Exhibit, 1997, AIAA-97-0651.
  8. Jones, D. and Clarke, D., “"Simulation of a Wing-Body Junction Experiment using the Fluent Code", Dsto-tr-1731, Defence Science and Technology Organization, Australian Government, Department of Defense, 506 Lorimer St., Fishermans Bend, Victoria 3207, Australia, 2005.
  9. Yakhot, V. and Orszag, S. A., "RenormalizationGroup Analysis of Turbulence. 1. BasicTheory", Journal of Science Computation, Vol.1, 1986, pp. 3-51. https://doi.org/10.1007/BF01061452
  10. Bates, J. S., Sienz, J. and Toropov, V. V.,"Formulation of the Optimal Latin HypercubeDesign of Experiments Using a PermutationGenetic Algorithm", AIAA / ASME / ASCE /AHS / ASC Structures, Structural Dynamics &Materials Conference, 2004, AIAA Paper2004-2011.
  11. Myers, R. H. and Montgomery, D. C.,"Response Surface Methodology - Process andProduct Optimization Using Designed Experiments",John Wiley & Sons, New York, 1995.