• Title/Summary/Keyword: wing surface pressure

Search Result 73, Processing Time 0.027 seconds

Control of Delta-Wing Vortex by Apex Strake

  • Sohn, Myong-Hwan;Chung, Hyoung-Seog
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.2
    • /
    • pp.98-106
    • /
    • 2007
  • The vortex flow characteristics of a double-delta wing, which can change the incidence angle of its apex strake was investigated through the wing-surface pressure measurement and the particle image velocimetry(PIV) measurement of the wing-leeward flow region. The apex strake has sharp edges and can change its incidence angle with a hinge line at the 23% chord position measured from the apex of the main wing. The present study revealed that the incidence-angle change of the apex strake could greatly alter the vortex flow pattern around the double-delta wing and the wing-surface pressure distribution, which suggested that the apex strake could be used as an effective device for the active control of delta-wing vortex flow.

Control of Delta-Wing Vortex by Micro-Fin-Type Leading-Edge Flap

  • Sohn, Myong-Hwan;Chung, Hyoung-Seog;Cho, Dong-Hyun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.2
    • /
    • pp.128-136
    • /
    • 2006
  • The present study examined the effects of micro leading-edge flaps on the vortex characteristic changes of a double-delta wing through pressure measurements of the wing upper surface and PIV measurements of the wing-leeward flow region. The experimental data were collected and analyzed while changing the deflection angle of the leading-edge flaps to investigate the feasibility of using micro leading-edge flaps as flow control devices. The test results revealed that the leading edge modification could greatly alter the vortex flow pattern and the wing surface pressure of the delta wing, which suggested that the leading-edge flaps could be used as an effective device for the control of delta-wing vortex flow.

Effects of Strake Incidence-Angle on the Vortex Flow of a Double-Delta Wing (스트레이크 붙임각이 이중 삼각날개의 와류에 미치는 영향)

  • 손명환;정형석;장조원
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.10
    • /
    • pp.7-15
    • /
    • 2006
  • The effects of strake incidence-angle on the vortex characteristics and the wing-surface pressure distribution for a double-delta wing with strake were investigated experimentally. The strake incidence-angle of negative sign(strake is pitched down from the main-wing upper-surface) increased the suction pressure of the wing-upper surface, which was the same effect of increase of angle of attack. This change of the suction pressure was caused by the closer movement of the vortex cores to the wing upper surface rather than the increase of the vortex strength.

Surface pressure measurement on a wing of SWIM by using PSP (PSP를 이용한 항공기 형상 모형 날개 표면 압력 측정)

  • Jung, Hye-Jin;Kwon, Kijung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.4
    • /
    • pp.337-345
    • /
    • 2008
  • this study, three dimensional surface pressure distributions of SWIM whose main wing has NACA4412 airfoil with NACA0012 flaps were experimentally measured by pressure sensitive paint. Surface pressures on suction and pressure sides of the wing were measured by changing an angle of attack at a Reynolds number of 3.1x105 in KARI 1m subsonic wind tunnel. The experimental results showed that as an angle of attack increases minimum pressure region on a suction side moved from the wing root to the tip and low pressure region around trailing edge of the wing tip which causes wing tip vortex was observed. Although low pressure region at the tip still observed at an angle of attack 15 deg., other area on a suction side showed flat pressure distribution in a span-wise direction. It was also observed that the mean value of pressure coefficients was about 0.077 through a comparison between PSP and pressure taps at the same test conditions.

NUMERICAL ANALYSIS OF PRESSURE PERTURBATION OF DELTA WING VORTEX FLOW AT A HIGH ANGLE OF ATTACK (고 받음각 ONERA 70도 삼각날개 와류 유동의 압력 섭동 분석)

  • Son, M.S.;Sa, J.H.;Park, S.H.;Byun, Y.H.
    • Journal of computational fluids engineering
    • /
    • v.20 no.2
    • /
    • pp.73-80
    • /
    • 2015
  • Delayed Detached-Eddy Simulation was conducted to investigate surface pressure coefficient distribution and surface pressure fluctuation over an ONERA 70-degree delta wing at a high angle of attack. Time-averaged surface pressure distribution is directly affected by the primary vortices, whereas the pressure fluctuation is influenced by the unsteady fluctuating boundary layer over the surface. And pressure coefficient, velocity, pressure fluctuation, and turbulent kinetic energy were analyzed along the vortex core in order to investigate the process of vortex breakdown. Consequently, strong pressure fluctuations were found where the vortex breakdown was occurred at x~620 mm. The turbulent kinetic energy abruptly increased and followed after the vortex breakdown.

Efficient Aerodynamic Computation of a Wing Model Considering Body Effect for the Aeroelastic Application

  • Lee, Seung-Jun;Im, Dong-Kyun;Lee, In
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.10 no.1
    • /
    • pp.14-19
    • /
    • 2009
  • The typical aeroelastic analysis for a complex configuration such as a complete aircraft was done using the aerodynamic results of the wing and the structural modes of a complete aircraft; that is, the aerodynamics of a wing of a complete aircraft is assumed to be not much influenced by the body shape. Nevertheless, the body shape can cause a distortion of aerodynamic pressure on the wing surface and it is necessary to investigate the body effect in flutter analysis. In this reseasrch, MGM inverse design method is applied to include the body effect of a wing-body model which disturbs the pressure distribution on the wing surface.

Effects of Strake Planform on the Vortex Flow of a Double-Delta Wing (이중 삼각날개의 와류에 미치는 스트레이크 평면형상의 영향)

  • 손명환;정형석
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.8
    • /
    • pp.16-23
    • /
    • 2006
  • The effects of strake planform shapes on the vortex formation, interaction, and breakdown characteristics of double-delta wings were investigated through pressure measurements of upper wing surface and off-surface flow visualization. Three different shapes of strakes were attached to a delta wing respectively to form double-delta wing configurations and tested in a medium-sized subsonic wind tunnel. The results of the pressure measurements indicated that the strake planform having a higher sweep angle generated more concentrated vortex systems at upstream locations, which, however, tended to diffuse and break down much faster at the downstream locations. It was also found from the off-surface visualization results that the cause for the vortex concentration was due to the acceleration of coiling and merging processes between the wing and strake vortices.

Lift/Drag Prediction of 3-Dimensional WIG Moving Above Free Surface

  • Kwag, Seung-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.384-391
    • /
    • 2001
  • The aerodynamic effects of a 3-dimensional Wing in Ground Effect (WIG) which moves above the free surface has been numerically investigated via finite difference techniques. The air flow field around a WIG is analyzed by a Marker & Cell (MAC) based method, and the interactions between WIG and the free surface are studied by the pressure distributions on the free surface. Waves are generated by the surface pressure distribution, and a Navier-Stokes solver has been employed, to include the nonlinearities in the free surface conditions. The pressure values Cp and lift/drag ratio are reviewed by changing the height/chord ratio. In the present computations a NACA0012 airfoil with a span/chord ratio of 3.0 are treated. Through computational results, it is confirmed that the free surface can be treated as a rigid wavy wall.

  • PDF

Investigation of Vortex Interactions over a Delta Wing with the Leading Edge Extension (연장된 앞전을 갖는 델타형 날개에서의 와류 상호작용에 관한 연구)

  • 이기영;손명환;장영일
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.215-224
    • /
    • 2001
  • An experimental investigation was conducted on the interaction of vortices over a delta wing with the leading edge extension for three angles of attack($16^{\circ},\; 24^{\circ} \;and\; 28^{\circ}$) at Reynolds number of $1.76{\times}10^6.$ The experimental data included total pressure contours and velocity vectors using 5-hole probe measurements. Constant total pressure coefficient contours show the LEX vortex moves downward and outboard, while the wing vortex exhibited an inboard and upward migration. At near the trailing edge, these vortices reveal a direct interaction between the wing and LEX vortex, featuring a coiling of vortex cores about each other. The combined effect of the interaction of these two vortices and proximity to the wing surface results in the increase of the suction peak. This is in contrast to the result obtained on the delta wing alone configuration, where the effect of the vortex breakdown was manifested. The interaction of the wing and LEX vortices is more pronounced at higher AOA.

  • PDF

Papers : Effects of LEX on the Surface Pressure Distribution over a Delta Wing (논문 : LEX 가 델타형 날개의 표면압력분포에 미치는 영향)

  • Baek, Seung-Uk;Son, Myeong-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.3
    • /
    • pp.1-7
    • /
    • 2002
  • An experimental study was conducted to investigate the effects of leading edge extension(LEX) on the surface prssure distribution over a delta wing in a subsonic wind tunnel. Freestream velocity was 40m/sec and Reynolds number per meter was 1.7x$10^6$ with total pressure of 101Pa and total temperature of 278K. LEX changed the surface pressure distribution on the wing dramatically. Comparing with the results without LEX, the peak of pressure distribution decreased on the front chordwise location but it turned to increase on the rear chordwise location with increase of the angle of attaci. The spanwise gradient of the pressure distribution also increased in the rear chordwise location. Without LEX, the peak of pressure distribution increased and decreased irregularly with increase of the angle of attack at each chordwise location, but LEX made it increased almost linearly with increase of the angle of attack at all of the chordwise locations.